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Report on US ARMY AWARD DAAD19-00-1-0534
Optimal Subband Coders for Cyclostationary Signals
PI: Soura Dasgupta
University of Iowa

The purpose of the award was to study the subband coding of cyclostationary signals.
Accomplishement to date are listed below.

e We had proposed to study subband coding of cyclostationary signals with uniform
filter banks, under two bit rate constraints. (i) When the bit allocation among the
subband signals is static, and (ii) when the bit allocation is periodic but the bit
budget across the subband signals is constant at each instant of time. Problem (i)
was solved before the award was received. We have solved (ii). In addition we have
also proposed a third criteria in which the bit budget is defined as a fixed average
over a period of the signal cycle. We show that though the optimizing filter bank is
the same for all three, and have characterized this filter bank, the new criteria leads
to a higher coding gain.

Figure 1 shows the coding gains under the last two schemes, for an input with 2-
periodic statistics. The crosses are the second scheme and the circles the third.
Observe that the last scheme leads to higher coding gains times better.
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80 T

T T T T T T
o : (TDBA Scheme)
X : (PDBA Scheme)
70+ o004
0000
ooooooOOOOOOOOOO X X X X X X
OOOO ><><><><><><><XX

o O X X
Kooooo X X X XX
©]

)]
[=]
T

50 x m

30 : x B

Coding Gain (in dB) as ratio of distortion
.lo>
T
|

]
o
T
1

10 %X 4

|
0 5 10 15 20 25 30 35 40
# of channels

Figure 1: Coding gain plots.



e Realization of these optimizing filter banks requires the notion of compaction filters in
the case of stationary signals. We have introduced the concept of energy compaction
for cyclostationary signals as well. We have also generalized the notion of M-band
filters to cyclostationary case. We have studied the theory and design of cyclosta-
tionary energy compaction filters and showed how they relate to the optmizing filter
banks.

e We had proposed to study the use of nonuniform filter banks for subband coding for
both the stationary and cyclostationary signals. En route to such a study, we have
showed that every biorthogonal dyadic filter bank has a tree structured decomposi-
tion. This permits the optimization of such filter banks to be conducted in a tree
structured framework, making the underlying task much simpler.

e A common occurrence of cyclostationarity is in Orthogonal Frequency Division Mul-
tiplexed (OFDM) communications. We have shown that certain channel resource
allocation problems for OFDM systems are dual problems of subband coding. We
have solved the optimum resource allocation problem for OFDM in the multiuser en-
vironment. Specifically, we have considered in turn a variety of settings culminating
in one in which each user is assigned different number of subchannels and different
bit rates and is required to achieve differing symbol error rates and supports po-
tentially different modulation schemes. Our goal is to select the input and output
block transforms, the linear redundancy removal scheme at the receiver, the number
of bits/symbol assigned to each subchannel, and the subchannel assignment to each
user, in order to achieve the QoS specifications under a zero ISI condition with min-
imum transmitted power. We assume knowledge of the equalized channel and the
second-order statistics of the noise at the receiver input.

(A) The optimum input/output block transforms are orthonormal.

(B) The selection of the optimum input/output transforms and redundancy removal
schemes depends only on the channel /interference conditions, and does not de-
pend on such service requirements as the required bit rates and symbol error
rates. Thus there is a conceptual separation between the selection of these
variables, and the remaining tasks of bit loading and subchannel selection. In
practical terms this considerably simplifies the optimzation problem.

Figure 2 compares the transmitting power of the DF'T based DMT under no optimum
bit allocation and optimum bit allocation with an optimum unitary transceiver. We
assume the equalized-channel to be C(z) = 1+0.5271, and a noise source v(n) whose
power spectral density is shown in fig. 1. We assume the DMT system supports two
user services. Both services employ QAM modulation schemes, and the target rates
for the two users are 600 Kbps and 1 Mbps respectively. The (4, j) on the x-axis of the
plot indicates that user 1 and 2 were respectively allocated 7, j number of channels.



The plot shows that there is a 10 dB saving in transmit power with our design over
the DFT based DMT under optimum bit allocation, and a 14 dB improvement over
the conventional DMT with no optimum bit allocation.
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Figure 2: Comparison of transmit power levels.

e For optimum coding over transmission channels it is imoportant that the transmitter
be aware of the channel it transmits over. While in recent years many algorithms have
been proposed that assume such channel knowledge at the transmitter, no method
for making exists for making the transmitter channel aware. We have proposed a new
feedback scheme that permits the transmitter to directly estimate the channel.

e In both subband coding and DMT bit loading is an important problem. Specifically,
for an N-subchannel system in these problems reduce to general problem:

N
MinimizeP(by, ..,bx) = > ¢i(by) (1)
k=1
subject to
N
Constraint : Y _ b, = B, b, € {0,1,..B}, (2)
k=1



where ¢, is a convex function nonnegative integers by, and B is a positive integer. In
subband coding

o1 (by) = 272 (3)

where ay, is determined by the signal variance in the k-th subchannel, and P(by, .., by)
is the average distortion variance. In multicarrier systems

where «y, reflect target symbol error rates (SER), and channel and interference condi-
tions experienced in the the k-th subchannel, and P(by, .., by) is the total transmitted
power. Higher values of a4, reflects more adverse subchannel conditions and/or lower
target SER; by is the the number of bits assigned to each symbol in the cognizant
subchannel.

The complexity of most existing algorithms for such discrete bit loading grows with
B. We have formulated a new bit loading scheme whose complexity is independent of
B and yet like existing schemes depends as O(N log N) in the number of subchannels.

A comparison of the performance of the algorithms of [2] and [1] and the proposed
algorithm with respect to the number of computations required is shown in the figures
3 and 4, for the cases where N = 32 and N = 64, respectively. In implementing [1],
which is a suboptimal algorithm, the maximum number of bits, B* that any channel
can be assigned is kept at B.
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Figure 3: Runtime comparisions of the three algorithms for N=32

Number of computations needed for each algorithm to converge to the optimal solu-
tion was calculated by assuming that addition, subtraction, div, mod, multiplication
or division of two numbers would need one computation as would the logical compar-
isons between two decimal numbers. The results show that the algorithm described



Number of Channels = 64
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Figure 4: Runtime comparisions of the three algorithms for N=64

in [1] is linear with respect to B while the algorithm in [2] needs large number of
computations to converge as B grows. The number of computations needed for the
proposed algorithm is independent of the change in B the minor variations whose
source is discussed in the paper referenced below. The improvement in performance
is very significant if B is large when compared to N.

Collaboration with DOD Labs: We are currently part of a team that is initiating
collaboration with TACOM on research on digital humans. Many of the resource allocation
ideas implicit in this work are crucial to that project.
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Subband Coding of Cyclostationary Signals

Ashish Pandharipande and Soura Dasgupta

October 24, 2001

Abstract

We consider optimal orthonormal filter banks for subband coding of wide sense cyclostationary signals,
with N-periodic second order statistics. An M-channel uniform filter bank, with N-periodic analysis and
synthesis filters, is used as the subband coder. Dynamic schemes involving N-periodic bit allocation are
employed. An average variance condition is used to measure the output distortion. We show that for at
least three potential bit allocation strategies, the optimum filter bank is a principal component filter bank.

Index Terms: Subband coding, Filter bank, Bit allocation, Dynamic schemes, Majorization theory.
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1 Introduction

Wide sense cyclostationary (WSCS) signals arise in many applications, [1], [2]. We consider optimum
orthonormal subband coding of zero mean WSCS signals with N-periodic second order statistics, i.e.
signals that obey for all k,i: E[z(k)z*(l)] = E[z(k + N)z*(l + N)] where &[] denotes the expectation
operator. The subband coder itself is an M-channel maximally decimated uniform filter bank (UFB),
(see fig. 1), with N-periodic linear analysis and synthesis filters, H;(k, z) and F;(k, z), respectively. Each
subband signal v;(k), is quantized at the kth instant, by a b;(k) bit quantizer, @;. Subject to bit rate and
orthonormality constraints, we wish to allocate bits b;(k), and select, H;(k, z) and F;(k, z) to minimize the
average variance of Z(k) — z(k).

Among many possible bit rate constraints one can adopt, three are of interest here. The first called
static bit allocation (SBA) involves constant b;(k), and has been studied in [6]. The second and third, both
assume N-periodic bit allocation:

bi(k + N) = b;(k). (1.1)

In the second, the average bit rate over all the channels is constant at each time instant, i.e. given b and
all £,
M—1
b= (Z bi(k)> /M. (1.2)
i=0
The third assumes a fixed average bit rate over periods of length N:
1 N-1M-1
b= kz;; g bi(k). (1.3)
Among these, (1.1) requires the least computation and (1.3) is the most general. On the other hand, (1.2)
is preferred over (1.3) in applications, such as control over networks, where the bit rate constraint must be
enforced at every time instant.

Recent studies, [4, 5] have established that the optimum UFB subband coder for Wide Sense Stationary
(WSS) signals is a principal component filter bank (PCFB), [3]. In [6] we have likewise shown that for SBA
also the optimum UFB is a PCFB. The principal contribution of this paper is to show that even under
(1.2) and (1.3), optimality is attained through PCFB’s, despite the differing bit allocation constraints.
This suggests the universality of PCFB based solutions for problems such as these.
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Figure 1: An M-channel filter bank as subband coder.




2 Optimum Bit Allocation
For any zero mean signal z(k), define o2 (k) = £[z%(k)]. All subband signals v;(k) have N-periodic second

order statistics. As in [4], [5], we assume that the quantizers are modeled by additive zero mean noise

sources, independent of the v;(k), with variances of the form

O'gi (k) = 02721’1’(’“)0; (k), (2.4)

with ¢ a distribution dependent constant. Note that under (1.1), o2 (k) are N-periodic.
Observe that the overall filter bank is M N-periodic. Let E(z) and R(z) be the transfer functions of
M N-fold blocked versions of the analysis and synthesis banks respectively. Define the WSS vectors,

i(k) = [zo(NE),...,20(NK = N +1),...,2p_1(NK),...,zpr_1(Nk — N +1)]T,
(k) = [vo(NE),...,00(NK — N +1),...,o5 1(Nk),...,opr 1(Nk — N + 1)]%, (2.5)

with power spectral density (PSD) matrices S;(w) and Sj(w) respectively. We assume Sz(w) is known.

We assume the perfect reconstruction and orthonormality conditions,
EY2)E(z) =T = R'(2)R(z), and R(z) = E'(2). (2.6)

We propose to minimize the average variance of §(k) = z(k) — (k) and under (1.2) and (2.6), obtain

= 2 I (2.7)
MN = N = i MN (= =
1/M

92— 26 N—1 /M—1
> = o2 (k)] (2.8)

k=0 \ =0

with equality holding iff for each 4,1, k

2= ik 52 (k) = 2720 M) o2 (k). (2.9)

Likewise under (1.3), (2.7) is lower bounded by

N—1M-1 1/MN
2% (H 11 agl(k)> , (2.10)

k=0 1=0
with the bound met iff for each i,1, k1, k2

2—2bi(k1)agi(k1) — 2*21’1(’02)012}1(]@). (2.11)

Observe, the optimum bit allocation scheme (2.11) is more stringent than (2.9).

Consequently UFB selection reduces to the following problem:
Problem 2.1 Consider the MN x MN system E(z) with WSS input vector (k) with given Hermitian
PSD matriz Sz(w). Suppose 9(k) in (2.5) is the output of E(z). For (1.2) (resp. (1.3)) find E(z) such
that Jy (resp. Jo) is minimized subject to (2.6).

N—-1 M-1 N—-1M-1
Z H a NYM and J, = H H O'gl(k). (2.12)
k=0 =0 k=0 =0



While J; is similar to the corresponding cost function in the WSS case, [5], J; is more complicated.
The difference stems from the fact that implicit in (1.2) are N- bit budgets. Both in turn are different from
the cost function for (1.1) considered in [6]. Finally, while J> does not change by permuting the subband
variances, J; does. Indeed given a set of subband variances at different time instants we need consider
only the arrangements that lead to the minimum value of J;. Such optimal arrangements are characterized
below.

Optimum Arrangement: Among the various permutations of 012% (7), ones that minimize J; obeys, [7]:

M-1 M-—1
oo (k1) > o5 (k2) = [[ o5.(k1) < ][ o (k2) (2.13)

For a 2-channel filter bank, M = 2, this requires that the largest be paired with the smallest, the second

largest with the second smallest etc..

3 Optimum Subband Coder

We now characterize the optimum selection of E(z), by introducing the notions of majorization and
Schur concavity, [7].
Definition 3.1 Consider two sequences x = {z;}I; and y = {y;}1, with ; > z;11 and y; > yix1. Then

we say that y majorizes x, denoted as x < y, if the following holds with equality at k = n

k k
dzi<> yi, 1<k<n
=1 =1
Fact 1 If H is an n x n Hermitian matriz with diagonal elements hy, ..., hy, and eigenvalues A1, ..., Ap,

then h < A on R™.
Definition 3.2 A real valued function ¢(z) = ¢(z1,...,2,) defined on a set A C R™ is said to be Schur
concave on A if
<y onA = ¢(z)=dy)
¢ 1is strictly Schur concave on A if strict inequality ¢(x) > ¢(y) holds when x is not a permutation of y.

We will now state a theorem that results in a test for strict Schur concavity. We denote

_ 8¢(z) _ 82¢(z) _ 0J1 _ 32J1
= om0 P60 =g NED = oy and Mk hman) = 60T )

by (2)

Theorem 3.1 Let ¢(z) be a scalar real valued function defined and continuous on D = {(z1,...,2,) :
Z1 > ... > zp}, and twice differentiable on the interior of D. Then ¢(z) is strictly Schur concave on D
iff:(i) ¢ is symmetric in its arguments, (ii) ¢ (2) is increasing in k, and (iii) ¢4y (2) = dui1)(2) =
D) (2) — B k1) (2) — bra1,k) (2) + B pr1y(2) <O.

It is known, that Jy is Schur Concave, [7]. We also have the following lemma.



Lemma 3.1 The real valued function Jy as defined in (2.12) is strictly Schur concave under (2.13).
Proof: Clearly J; is symmetric in its arguments 01211 (k), satisfying (i) of Theorem 3.1. Note that
_ /M
1 (M5 o2,(k)

Ji(kil) = o P . (3.14)

If agll (k1) > ogll (k1), then under (2.13) Ji(k1,11) < Ji(ke,l2), satisfying condition (ii).
To establish (iii), note that

(Hf\ialag.(k))l/M (f\ialaii(m))l/M

Jl(k,l) = Jl(m,n) <~ = , (3.15)

a2 (k) o3 (m)
M-1 1/M

1—1;4 (I_L‘—(Oa2 (”I;)()kz)) if k=m,l =n,

vy
Ji(k,l,m,n) = M=t o2 )M .
e (Hfr%f(k)o%i i itk =ml#n,
0 if kK £ m,l =mn,

and hence, under (3.15)

Jl(kalakal) - Jl(kalaman) - Jl(maln’a kal) + Jl(manam’n) <0.

]
Note that
Si(w) = E(w)Sz(w)E (w). (3.16)
Since S;z(w) is Hermitian, we may write
Sz(w) = U(w)A(w) T (w), (3.17)

with U(w) unitary and A(w) = diag {Ao(w), A1 (@), - .., Amrv—1(w)}, with Ai(w) > Xip1(w) > 0 at all w.
Then, [7], {2702 (k) kN:_Ol’Z?]:V[O_l < {J&" Mi(w)dw}MN =1 We then have the following result.
Theorem 3.2 Consider Problem 2.1 and all quantities defined therein. Then optimality is attained iff
E(w) = PUY(w), where for (1.8), P is any constant permutation matriz, and for (1.2), P is any constant
permutation matriz that leads to an optimum arrangement for Jy in (2.12), when the subband variances
are the normalized integrals of \i(w). In this case, S3(w) = PA(w)P?' .

Figure 2 shows the coding gains under the two schemes, for an input with 5-periodic statistics. As
expected, (1.3) leads to higher coding gains. Its disadvantage is that while the overall bit rate averaged
over N samples is the same as in (1.2), it could lead to time instants in which the bit rate is significantly

lower than the target. In certain time critical applications this may not be desirable.



Coding Gain vs # of channels: Subband coding of WSCS signal with period 5
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Figure 2: Coding gain plots.

4 Conclusions

We have derived conditions for the optimal orthonormal subband coding of N-WSCS signals, using an

M-channel uniform filter bank as subband coder with N-periodic filters and two periodic bit allocation

schemes. As with the results of [6], where a static bit allocation scheme was considered, the optimum filter
bank in each case is a PCFB.
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ABSTRACT

We consider optimal orthonormal filter banks for subband

coding of wide sense cyclostationary signals, with N-periodic
second order statistics. An L-channel over decimated uni-

form filter bank, with N-periodic analysis and synthesis fil-

ters, is used as the subband coder. An average variance con-

dition is used to measure the output distortion. We show that

for at least three potential bit allocation strategies, the opti-

mum filter bank is a principal component filter bank. This

is in the same vein as our earlier results on subband coding

with maximally decimated filter banks.

1. INTRODUCTION

Wide sense cyclostationary (WSCS) signals arise in many
applications, [1], [2]. We consider optimum orthonormal
subband coding of zero mean WSCS signals with N-periodic
second order statistics, i.e. signals that obey for all k,I:
Elz(k)z=(1)] = Elz(k + N)x*(I + N)] where £[-] denotes
the expectation operator.

The subband coder itself is an L-channel over decimated
uniform filter bank (UFB), (see fig. 1), with

M>L,

and N-periodic linear analysis and synthesis filters, H;(%, z)
and F;(k, z), respectively. Each subband signal v;(k), is
quantized at the kth instant, by a b;(k) bit quantizer, @);.
Subject to bit rate and orthonormality constraints, we wish
to allocate bits b;(k), and select, H;(k,z) and F;(k, z) to
minimize the average variance of (k) — x(k).

Among many possible bit rate constraints one can adopt,
three are of interest here. The first called static bit allocation
(SBA) involves constant b;(k), and a bit rate constraint

L—1
b= (Z bi) /L.
i=0
Supported by ARO contract DAAD19-00-1-0534 and NSF grantsECS-
9970105 and CCR-9973133.

(1.1

The second and third, both assume N-periodic bit allocation:
bi(k+ N) = b;(k). (1.2)

In the second, the average bit rate over all the channels is
constant at each time instant, i.e. given b and all &,

b= (Lz_l bi(k)> /L.

The third assumes a fixed average bit rate over periods of
length IV:

(1.3)

1 N-1L-1
b=+ > Zb,-(k).

k=0 =0
Among these, (1.2) requires the least computation and (1.4)
is the most general. On the other hand, (1.3) is preferred over
(1.4) in applications, such as control over networks, where
the bit rate constraint must be enforced at every time instant.

Subband coding under these three constraints, with max-
imally decimated filter banks (i.e. L = M) has been studied
in [6] and [7]. These references show that, while the op-
timum bit allocation schemes differ among (1.1 - 1.4), the
optimizing H;(k, z) and F;(k, z) can be chosen as the same
regardless of the allocation scheme. In fact a Principal Com-
ponent Filter Bank (PCFB), represents the common optimiz-
ing solution.

Recent studies, [4, 5] have established that the optimum
UFB subband coder for Wide Sense Stationary (WSS) sig-
nals is a PCFB, [3]. The principal contribution of this paper
is to show that even on the over decimated case, optimality
is attained through PCFB’s, despite the differing bit alloca-
tion constraints, reinforcing the universality of PCFB based
solutions for problems such as these.

2. OPTIMUM BIT ALLOCATION

(1.4)

For any zero mean signal z(k), define o2 (k) = &[z*(k)].
All subband ssignals »; (k) have N-periodic second order statis-
tics. As in [4], [5], we assume that the quantizers are mod-
eled by additive zero mean noise sources, independent of the
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Fig. 1. An L-channel over decimated filter bank as subband
coder.

v;(k), with variances of the form

o2 (k) = 27 Fg? (k), (2.5)

with ¢ a distribution dependent constant. Note that under
(1.2), o7 (k) are N-periodic.

Observe that the overall filter bank is A N-periodic. Let
E(z) and R(z) be the transfer functions of M N-fold blocked
versions of the analysis and synthesis banks respectively. In
particular, £(z) is LN x MN and R(z) is MN x LN.
A key difference between the over decimated and the maxi-
mally decimated cases is that these transfer functions are no
longer square.

Define z;(k) = x(MFk — i), z;(k) = x(MFk — i)and the
WSS vectors,

i(k) = [l’o (Z\Tk), ey X (_/VIXr - N+ 1), ceey .l'ﬂ,[_l(l\rk),
. ,.Z‘Az\/[_l(Nk — N+ 1)]T,

ﬁ(k) = ['U()(]\/Tk'), ... ,UO(A’TI( - N+ 1), . ,vL_l(]\"k),
-1 (Nk— N+ 1:)]T,

with power spectral density (PSD) matrices S; (w) and S (w)
respectively. Observe,

o(k) = B(z)i(k).

We assume S;(w) is known. We assume the perfect recon-
struction and orthonormality conditions,
E(2)E'(z) =1 = R'(2)R(z), and R(z) = E*(z). (2.7)
We propose to minimize the average variance of g(k) =
#(k) — x(k) and under (1.3) and (2.7), obtain

LN—-1 N—-1L-1

1

1 ,
2 _ 2 (1
RS SRR 5 yET
k=0 k=0 (=0
C N—-1L-1
— m 9~ 2b;(k) 2 (Im

k

0

g-2b N=1 /L= 1/L

~ (H o;i(k)) (2.8)
=0

0

0 =

(A4
ol

kol

(2.6)

&(k) with equality holding iff for each i, 1, k

2720k 2 (k) = 2720k g2 (), (2.9)
Likewise under (1.4), the lower bounded becomes
N—1L-1 1/LN
(H II avl(k)> , (2.10)
k=0 =0
with the bound met iff for each 7,1, k1, k-
27202 () = 2720262 (). (2.11)

On the other hand under the static bit allocation strategy of
(1.1), as shown in [6], the lower bounded becomes

(9—2b L=l /N1
~ 11 <Z ai,(k)>, (2.12)
=0 k=0

with the bound met iff for each 7,1

N—1 N-1
9—2b: (Z aﬁi(k')> =22 <Z Ui(’d) AL

k=0 k=0

Observe, the optimum bit allocation scheme (2.11) is the
most stringent among (2.9), (2.11) and (2.13).

Consequently UFB selection reduces to the following
problem:

Problem 2.1 Consider the LN x M N system E(z) with
WSS input vector &(k) with given Hermitian PSD matrix
S;(w). Suppose ¥(k) in (2.6) is the output of E(z). For
(1.3) (resp. (1.4)), (resp. (1.1)) find E(z) such that .J; (resp.
J2) (resp. J3) is minimized subject to (2.7).

N-1 L-1

Ji= ([T a.0""

N-1L-1 1/LN
= (H 11 oi(k))

k=0 =0

(2.14)

(2.15)

L-1 /N-1
Js =] <Z ozl(k)> (2.16)
=0 k=0

Observe all three of (2.14) - (2.16) are quite different
from one another. While .J, is similar to the corresponding
cost function in the WSS case, [5], J; and Js are more com-
plicated. Further while .J; does not change by permuting the
subband variances, J; and .J; do. Indeed given a set of sub-
band variances at different time instants we need consider
only the arrangements that lead to the minimum value of J1,
Js. Such optimal arrangements are characterized below.



Optimum Arrangement for .J;: Among the various per-
mutations of oﬁi(j,), ones that minimize J, obeys, [8]:

L—1 L—1
k) > o2 (k) = [] o2,(k) < T] 02.(k2) (217)
iZm iZn

2
T (

For a 2-channel filter bank, L = 2, this requires that the
largest be paired with the smallest, the second largest with
the second smallest etc..

Optimum Arrangement for J3: Among the various per-
mutations of o2 (), ones that minimize .J; obeys, [6]: for
eachl one partlal sum equals the sum of the V largest among
the o (), another equals the sum of the next IV largest, etc.

3. OPTIMUM SUBBAND CODER

We now characterize the optimum selection of E(z), by

introducing the notions of majorization and Schur concavity,
[8].
Definition 3.1 Consider two sequences z = {z;}/, and
y = {yi}i=, with z; > z;41 and y; > y;1. Then we say
that y majorizes z, denoted as = < y, if the following holds
with equality at £ = n

k k
in < Zyie
i=1 i=1

Definition 3.2 Consider two sequences = = {z;}!_, and
y = {y:}, with 2; > z;41 and y; > y;41. Then we say
that y weakly supermajorizes =, denoted as = <" v, if

1<Ek<n.

l 1

zl'i > Zyia

i=k i=k

1<k<I.

We also have the following Fact from [8].

Fact 1 Consider any NM x N M Hermitian matrix R with
eigenvalues Ay > A2 > ... > Ayy,andan LM x LM
matrix A = W R¥T, with the LM x N M matrix ¥ obeying

V¥t = I. Then the diagonal elements A; ; of A obey
{Ai HM <" {ANM—LM -1,y AN }- (3.18)
Furtherif M = N,
{4 1L < {, . Av - (3.19)
Definition 3.3 A real valued function ¢(z) = ¢(z1,...,2n)

defined on aset A C R" is said to be Schur concave on A if
z<y onA = ¢(x)>é(y).

¢ is strictly Schur concave on A if strict inequality ¢(z) >
#(y) holds when z is not a permutation of y.

Further we note the following result from [8].

Theorem 3.1 Let ¢ be a real-valued strictly Schur concave
function defined and continuous on D as in Theorem 3.1.
Then

r <"y = o(x)> o(y),

with equality holding only if z is a permutation of y.

We will now state a theorem that results in a test for strict
Schur concavity. We denote

N 0d(2) V_ 9%9(2)
by (2) = oo ¢ ) (2) = 951025
and
AL 021,
Jl(k,l)— agﬁl(k) and ]1(]»,1,771 71) W

Theorem 3.2 Let ¢(z) be a scalar real valued function de-
fined and continuous on D = {(z1,...,2n) : 21 > ... >
zn }, and twice differentiable on the interior of D. Then ¢(z)
is strictly Schur concave on D iff: (i) ¢(x)(z) is increasing
in k, and (ii)
¢(k+1)(3,)

by (2) = = Okk)(2) = Ok k1) (2)

= Phr1m(2) F Orr1rr1)(2) <

If only (i) holds then ¢( =) is only Schur concave.

It is known, that .J5 is strictly Schur concave, [8]. We
also have the following lemma.

Lemma 3.1 The real valued function .J; as defined in (2.14)
is strictly Schur concave under (2.17).

Proof:  Clearly J; is symmetric in its arguments o (),
satisfying (i) of Theorem 3.2. Note that

- 1/L
o (mE ew)
Ji(k,1) = I 7 (F) . (3.20)
vy
(kl) > o2 (kl) then under (2.17)
Ji(ki, 1) < Ji(ka, 1),
satisfying condition (ii).
To establish (iii), note that
L-1 o 1/L
Tk, 1) = Jy(mon) & %
L=t o (. 1/L
— (Hi:ﬂ 7y, ( )) , (3.21)

2
aun(m)



v () o2 )"

e EXT} if k =m,l =n,
Dt = 7 (H;:l?lk')jﬁ(k()k))—lu if k =m,l #n,
0 if k £ m,l =n,
and hence, under (3.21)
Jo(ky Lk D) = Ty (R Lymyn) = Ji(myn, kD)

+ Ji(m,n,m,n) < 0.

Finally we note that under the pertinent optimum arrange-
ment, J3 is also Schur concave, but not in the strict sense.
This follows from a slight variation of the fact that .J, is
strictly Schur convcave, see also [6]. Note that

Sy(w) = BE(w)Sz(w)Ef (w). (3.22)

Now suppose the N M eigenvalues of S; (w), are
{;\0(0.)). 5\1(»0), ey ;\LN,l(w)},

with A;(w) > Aj1(w) > 0 atall w. Definethe NM x LM
matrix whose columns are the unit eigenvectors correspond-
ing to the smallest LV eigenvalues of S;(w). Observe

ETT(w)ET(w) =1
Then, because of Fact 1

MN-1
i=MN—-LN"

27

et RS <V ([ A
0
Note the number of diagonal elements of S;(w) is less than
the number of eigenvalues of S;(w), as the overdecimated
condition forces E(z) to be rectangular. Consequently, un-
like [6] and [7], where maximal decimation forced a square
E(z), weak super majorization, rather than majorization must
be used.

We then have the following result.

Theorem 3.3 Consider Problem 2.1 and all quantities de-
fined therein. Then optimality is attained if for a suitable fre-
quency inavriant permutation matrix P, E(w) = PUT(w).

We note that for .J, this solution is unique to within an
arbitrary permutation matrix P. For J; too this solution is
unique to any permutation matrix P that enforces an opti-
mum arrangement. This is so because both .J; and J, are
strictly Schur concave. For .J3, on the other hand, even though
P must enforce an optimum arrangement, the solution is
by no means unique, as J; is not strictly Schur concave.
Nonetheless it is intriguing that despite the difference be-
tween the .J;, a common E optimizes all three.

4. CONCLUSIONS

We have derived conditions for the optimal orthonormal sub-
band coding of N-WSCS signals, using an over decimated
L-channel uniform filter bank as subband coder with N-
periodic filters three bit allocation schemes. As with the re-
sults of [6], [7] an optimum filter bank in each case is the
same PCFB.
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OPTIMALITY IN MULTICARRIER COMMUNICATION, MULTIPLE DESCRIPTION
CODING AND THE SUBBAND CODING OF CYCLOSTATIONARY SIGNALS

Soura Dasgupta

ABSTRACT

This paper considers three different problems in signal pro-
cessing/communications. The first involves Multiuser Dis-
crete Multitone Transmission (DMT). The other two prob-
lems concerns variants of subband coding, specifically sub-
band coding of cyclostationary signals and the multiple de-
scription coding. We show that underlying each is the same
optimization problem that can be solved using the theory
of majorization.

1. INTRODUCTION

This paper considers three different problems in signal pro-
cessing/communications. The first involves Multiuser Dis-
crete Multitone Transmission (DMT), [1], also variously
known as multicarrier modulation or Orthogonal frequency
Division Multiplexed (OFDM) communication. The other
two problems concerns variants of subband coding, specifi-
cally subband coding of cyclostationary signals and the mul-
tiple description coding. The paper demonstrates that de-
spite the different antecedents of these three applications,
underlying each is the same optimization problem. We show
how this problem can be solved through the use of the the-
ory of majorization, [8]. We begin by motivating the three
problems in question.

1.1. Multiuser DMT:

DMT has been adopted as the signaling standard in Asym-
metric Digital Subscriber Lines (ADSL), [12] and has been
proposed as the modulation scheme of choice in the Mill
Bahama and Magic Wand wireless ATM systems, [13]. In-
deed in advocating DMT over CDMA, the following point
is made in [14]: “A spreading factor of 85 (13 kb/s voice) or
128 (8kb/s voice) (for CDMA) is used with IS-95 to provide
about 20 dB of processing gain. At much higher bit rates,
CDMA systems must either reduce the processing gain or
expand the bandwidth, but neither may be an attractive
alternative.”

We consider DMT in a multiuser environment. Thus the
DMT system studied here supports multiple users, with
varying quality of service (QoS) requirements, quantified
by their respective bit rate and symbol error rate (SER)

*Department of Electrical and Computer Engineering,
The University of Iowa, Iowa City, IA-52242, USA, das-
gupta@eng.uiowa.edu and pashish@icaen.uiowa.edu. Supported

by ARO contract DAAD19-00-1-0534

Ashish Pandharipande™

specifications. Specifically, consider the DMT system as in
fig. 1 which depicts an M-subchannel filter bank model of
a DMT system. We consider an overinterpolated (N > M)
filter bank as the transceiver. We assume that the chan-
nel C(z) is FIR of length k (preequalization is assumed
to have been done), and v(n) is additive colored noise with
known spectrum. Thus for example v(n) could represent co-
channel interference. Note, [10] provides models for cochan-
nel interference in a variety of settings. To mitigate inter-
symbol interference (ISI), a form of redundancy is incor-
porated by choosing N = M + k. The transmitting filter,
Fy(z) = :.‘i_l z_iGik7 and Hy(z) = Ef;_ol ziS;m act as
modulating and demodulating transforms respectively. In a
DFT based DMT implementation [1], the IDFT and DFT
are used as the modulating and demodulating transforms
respectively.

In this paper, as in [5] we will consider more general
transformations leading to a generalized DM T system. To
capture a multiuser environment, we assume that there
are r-users each having been assigned L subchannels, i.e.
M = Lr. Further the k-th user requires a bit rate of #x,
and an SER of no more than nx. Our goal is to select
F; and H;, and distribute the bit rates among the various
sub-channels to achieve the above specifications with the
minimum possible transmitted power, given the knowledge
of C'(z) and the spectrum of v(n). The problem addressed
here thus directly generalizes that in [5], who also address
the same power minmization issue, but assuming a single
user subject to only one bit rate and SER constraint. The
multiuser setting renders the optimization problem highly
nontrivial in comparison to the single user case as will be
shown.

& L. iw i%b
[ — o
=
I
L

v(n)
01N b Fo(2) C(z) Ho(z) | | N
T%. TN b Fi(2) Hi(z) | | N
ML 1 N EslPa_i(2) Ly (2}~ | N

Figure 1. Filter bank based DMT model.



1.2. Multiple Description Coding (MDC)

Multiple description coding is a variant of subband cod-
ing in which different parts of the signal to be coded have
different bit budget requirements. Specifically in fig. 2 as-
sume M = Lr the Q; are b; bit quantizers that are sub-
ject to r separate average bit rate constraints. The goal
in MDC is to have essentially r redundant coders as in-
surance against failure of one or more. Thus, channels
{L(j—1)+1,---,L(j—1)+ L—1} represent the j-th coder.
Past work optimization related to MDC has focussed on the
two coder case, with optimization directed at minimizing
the average distortion subject to the failure of one coder,
[15]-[16]. By contrast our goal is to optimize in the fail-
ure free case. Specifically, we select the LTI filters F;, H;,
and allocate bits among the @;, subject to the bit rate con-
straints specified by the problem, to minimize the average
output distortion variance. The optimization occurs under
an orthonormality condition, specifically that the arrgange-
ments to the left and right of the quantizers are all pass.

(k) :
o Ho M Qo [ bu— Fo
"—P H1 —>+Mﬂ> Ql %+M—> F1 >
0 0
0 0 _L
—>Hy—1 [ YM > Qur—{4M > Fu s

VM T WM =T

Figure 2. A Maximally Decimated Uniform Filter
Bank

1.3.

We consider optimum orthonormal subband coding of zero
mean wide sense cyclostationary (WSCS) signals. A signal,

z(k) is WSCS with period N if for all k, [:

Subband Coding of Cyclostationary Signals

Elx(k)x* ()] = E[x(k + N)2* (I + N)],

where £[-] denotes the expectation operator.A wide variety
of man made signals encountered in communication, teleme-
try, radar and sonar systems, as well as several generated
by nature [6], are WSCS. Examples of manmade signals
exhibiting cyclostationarity include signals found in am-
plitude, phase and frequency modulation systems, periodic
keying of amplitude, phase and frequency in digital modula-
tion systems, and periodic scanning in television, facsimile
and some radar systems, [6]. Further, [7] demonstrates that
WSCS models provide more accurate descriptions of speech
signals than do traditional WSS models.

We assume that the filter bank is orthonormal. That is,
for all square summable inputs z(k), the combined energy
of the M subband signals v;(k) equals the energy in x(k),
and in the absence of the quantizers the filter bank output
(k) matches z(k) for all z(k). It is easy to show that
under these conditions the subband signals are themselves
WSCS with period N. We adopt a Pertodically Dynamic
Bit Allocation (PDBA) scheme where we choose each b; (k)

/

(k)

to be N-periodic, that is

bi(k+ N) = bi(k). (1..1)

Our goal is to select b;(k) and the filters H;(k,z) and
Fi(k, z) so that the average variance of #(k) — (k) is min-
imum, subject to orthonormality and the constraint that
the average bit rate at each time instant is constant.

1.4. Outline

In Section 2. we expose the commonality of the underly-
ing optimzation problems. Section 3. reviews the theory of
majorization and explains its applicability to the solutions
we seek. Section 4. describes the optima. Section 5. is the
Conclusion.

2. FORMULATION

Underlying each of the three problems there are two es-
sential tasks. Optimum Bit Allocation (OBA) that given a
selection of the filters, distributes the bits among the vari-
ous subchannels subject to the bit rate constarints. Filter
Selection which involves selecting the filters in an optimal
way. In this section we will focus on developing the objec-
tive functions and demonstrating that they reduce to the
same form under OBA.

2.1. DMT

Generally, to preserve orthogonality G = [Gi]-]%zl is uni-
tary i.e.

GG" =T
One can show, [5], under mild assumptions on C(z), that
given any G as in (2..2), H;(z) can be found to render the
Perfect Reconstruction (PR), condition:

(2.2)

Zi(n) = xi(n), Vie{0,---,M —1}.
Let the input power in the j-th subband of the k-th user be
Uij_k. Due to PR, this is also the output signal power Uzjyk
in the j-th subband of the k-th user. Let the output noise
power in this subband be Uijk, and b; ; be the number of
bits allocated in this subchannel. Due to different QoS re-
quirements, we may have different bit rate constraints for
the users. The average number of bits for the k-th user is
b = % zfz_ol bj . However we need to account for the re-
duction in bit rate due to the zero padding. The average bit
budget for the k-th user is then ¢; = %bk =% Ef;ol bk
With a high bit rate assumption made on the modulation
system, we have, [5], for the k-th user

where the constant ¢, depends on the SER ni. We seek to
minimize the average transmission power given by

T

L—1
f=a S, (2..3)

k=1 j=0

r

L—-1
- e,

k=1 j=0



subject to the bit rate budgets

L—-1

=%ij,k7 k=17...77’7 (
7=0

and the PR requirement. Now apply the AM-GM inequality
that states that the arithmetic mean is always greater than
the geometric mean, with equality iff the numbers whose
means they represent are identical. Thus,

=7 chkz ik (2..6)

k=1 ;=0

N
t
=

2%2 H?Q” ol )" (2..7)
k=1 7=0

r L—1
C
=< > @ el 0" (2..8)
k=1 =0

with equality holding iff for all ¢, k:

- L—1

221\’ H 1/L — 21\“ H C“ 1/L_ (2“9)

7=0 7=0

This is the optimum bit allocation strategy. The optimal
transceiver design is to find unitary matriz G so as to min-

imize
§ : | I 1 L
J = (697 a]k /
7=0

(2..10)

where
2Ny,

ap = cx 2’ ajk =0, ,. (2..11)

One can show that the quantities o2, are the diagonal

elements of R, given by

€k

R. = G R:Go, (2.12)

where R; is a known matrix obtained from the statistics of
v(n).
2.2. MDC

In this case the bit budget constraint is:

L—1

ijL+i :B] V] 6{077

1=0

r—1}. (2..13)

One must select the LTI filters F;, H; to be such that in
the absence of quantizers 2 (k) = z(k), i.e. the filter bank is
PR. In addition one imposes the requirement that E(z), the
M x M, M-fold lifted equivalent of the arrangement to the
left of the quantizers is all pass. Then the goal is to select
all pass E(z) and allocate bits among the subbands, subject

o (2..13), and PR, so that the average quantizer induced
mean-square distortion in #(k) is minimized. Under high
bit rates the quantizer noise model is [11],

wi(k) = vi(k) + ¢i(k)

where ¢;(k) is zero mean; white, independent from v;(k)
and has variance
o-ji - 697% 31 (2"14)

The average output distortion is then given by:

r—1 L—1

=3 ¥k,

k=0 j=0

(2..15)

Because of (2..14) under optimum bit allocation one can
show that the optimization problem reduces to finding an all
pass M x M, E(z), so that (2..10) is minimized with ax =1
and aj ; the variance of v;r4;. Notice in this case one must
find the all pass operator E(z) and that the variance of
vjr+i are the diagonal elements of the matrix

(2..16)

and that

S¢(w) = E(e*)Ss(w) [E(e 7)]" (2..17)

where S, (w) is the known Power Spectral Density (PSD)

matrix of the vector

[r(k),r(k - 1)7' "

Of course the all pass constraint reduces to

x(k—Lr+1]".

E(e ) [B(e )]" = 1. (2..18)

2.3. WSCS

Suppose, now z(k) in fig. 2 is has N-periodic second order
Then the goal is to select N-periodic H; and
F;, and bit allocation to minimize the distortion in #(k),
subject to PR, and the condition that, E(z) the NM x NM,
N M-fold lifted version of the arrangement to the left of the
quantizers is all pass. In this case we select the b; to be

N-periodic and subject to the Periodically Dynamic Bit
Allocation: with b;(k + N) = b;(k) i.e.

1
b= Z bi(k).

Clearly, the subband signals v; (k) are themselves WSCS
with period N, that is

statistics.

o2, (k) = o2, (k+ N).

We will assume that the quantizers are modeled by addi-
tive zero mean noise sources, independent of the v;(k), with
variances of the form

oo (k) = 272 M g2 (k). (2..19)

Note that under (1..1), o}, (k) are N-periodic. Then the
distortion §(k) = #(k) — z(k) is WSCS with period MN,

[17]. We propose to minimize the average variance of §(k),

MN-1

T > i =

k=0 k=0 1=0

N—-1M-1

(2..20)




Under optimum bit allocation one can show that one
must now find all pass E(z) so that the following is mini-

mized:
N—1 M—1 1/M
Jspc = (H 012”(].)> .

Note the similarity to (2..10). Again o7, (j) arte the di-
agonal elements of a matrix as in (2..16), with (2..17) and

(2..18) in force. Now however, Sz (w) and Sy, (w) are respec-
tively, the PSD’s of

(2..21)

i) = [2o(NK),....20(NK = N +1),
cosxm—1(Nk),...,em—1(Nk— N 4+ 1)],

v = [vo(Nk),...,v0(NK — N +1),

k k
..,Ulwfl(Nk),...,U]\/[,l(Nk—]\"-l-l)].
3. MAJORIZATION

We define majorization and Schur concavity [8].

Definition 3..1 Consider two sequences x = {z;}j—; and
y = {yi}izi with x; > xiy1 and yi > yiy1. Then we say
that y majorizes x, denoted as x < y, if the following holds
with equality at k =n

k

k
<> oy 1<k<n

i=1 i=1

Definition 3..2 A
real valued function ¢(z) = ¢(z1,...,2s) defined on a set
A C R" is said to be Schur concave on A if

zr<y onA = ¢(x) > o(y).

We will now state a theorem that results in a test for
strict Schur concavity. We denote

z (=
) and b () = T

by (2) =

- a:zaz] ’
Theorem 3..1 Let ¢(z) be a scalar real valued function de-
fined and continuous on D, and twice differentiable on the
interior of D. Then ¢(z) is strictly Schur concave on D
iff (i) ¢ is symmetric in its arguments, (i) ¢y (z) s in-
creasing in k, and (i11) ¢ry(z) = dry1)(2) = Drp)(2) —
Sk k1) (2) = Plra1.8) (2) + Pag1.041)(2) <O.

Theorem 3..2 If H is an n X n hermitian matriz with di-
, An, then

agonal elements hy, ..., h, and eigenvalues A1, ...

h<XonR".

Now turn to (2..10), the common objective function for
all three problems. Suppose, given {a; 1} one were to seck
the rearrangement of these to achieve the minimum value
possible. Then it follows from [18] that the optimum ar-
rangement must obey the following property:

L—-1 L—-1

Am,ky 2 Un,ky = Qk; | | @k < Qky | | @j,ky
j#m j#n

(3..22)

and
L

Qp > Qp =

|
—

L—1

ajm < || @in-

(3..23)

0 0

<.
Il

<.
Il

Call J under such an optimum arrangement J*. Then one
can show from Theorem 3..1 that:

Theorem 3..3 The real valued scalar function J as defined
in (2..10) under the optimality conditions (8..22-8..23) is

strictly Schur concave.

4. THE SOLUTION

All three problems have remarkably similar structure. Us-
ing the theory of majorization, and in particular Theorems
3..2 and 3..3, one can show the following.

e For DMT, the optimizing G is to within a permuta-
tion matrix the Karunen-Loeve Transform matrix of
the autocorrelation matrix of the M-fold lifted version
of v;(n).

e For Multiple Description Coding the solution is as fol-
lows. Suppose Sy (w) is the Power Spectral Density
(PSD) matrix of the vector of v;(n) in fig. 2. Sup-
pose A(w) is the diagonal matrix of the eigenvalues of
Sy (w), Ai(w) , with A (w) > Aig1(w). Define Q(w) to
be the matrix that is unitary at all w and in addition
forces

Qw) Sy (W) () = Aw).

Then for a constant permutation matrix, P, E(e’*) =

PQ(w).
e The solution for the WSCS problem is trivially similar.

Here the frequency invariant permutation matrix is used
to achieve the optimum arrangement exemplified in (3..22-

3..23).
5. CONCLUSION

We have shown that three problems in signal processing
and communications, with differing motivations and genesis
have similar solutions. All three benefit from the powerful
and elegant theory of Majorization. Given that both MDC
and WSCS problems relate to subband coding similarity in
their solutions is not a surprise. That they are also equiva-
lent to the optimal DMT problem can be attributed to the
fact that the optimum DMT can be interpreted as a dual
problem to subband coding.
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ABSTRACT

In this paper, we devel op an optimum compaction filter
based design of filter banks for the subband coding of wide-
sense cyclostationary (WSCS) signals. The design of the
optimal orthonormal filter bank is specified in terms of op-
timal compaction filters. Each filter is designed by just the
apriori knowledge of the cyclic autocorrelation of the input
WSCS signal. This design theory is developed by first pro-
viding further insight to the optimal compactionfilter design
in the case of wide-sense stationary (WSS) signals.

1. INTRODUCTION

The energy compaction concept plays an important role in
subband coding theory, and energy compaction filters find
applications in the design of orthonormal subband coders.
Optimality of filter banksisin the sense of maximizing cod-
ing gain, whichisameasure of the distortion dueto subband
guantization. The optimal orthonormal subband coding of
WSS and WSCS signals has been treated in [10], [11] and
[1], [6] respectively. It has been shown [8], [11] that the op-
timal orthonormal filter bank in the WSS case can be con-
structed by designing the analysis filters one at a time by
choosing them to be optimal compaction filters for appro-
priate power spectral densities (psds) derived from the in-
put signal psd. Compaction filters thus are of interest due
to their connection with optimal subband coding and prin-
cipal component filter banks. Compaction filters have been
treated in some detail for the WSS casein[8], [9], [11]. The
compaction filter was formulated as an eigen problemin [8]
and given a principal component approach. In [9], com-
paction filters were derived by an energy analysis. Proper-
ties of compaction filters have been further studied in [11].
In this paper, we develop the compaction filter concept
in the context of WSCS signals. Cyclostationarity is exhib-
ited by some parametersfor most manmade signal s encoun-
tered in communication, telemetry, radar, and sonar sys-

This work was supported by US Army contract, DAAAD19-00-1-
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tems, [2]. Considering these underlying periodicities and
modeling the random signals as cyclostationary can lead to
improvementsin performance of signal processors.

A signal z(k) isWSCS with period M if for al &, I:

Elz(k)z*(1)] = E[z(k + M)x™ (1 + M)],

where £[-] denotes the expectation operator. The subband
coder considered is an INV-channel uniform maximally dec-
imated filter bank depicted in fig. 1. We will consider a 2-
channel (V. = 2) subband coder in this paper toillustratethe
ideas. Here z(k) isWSCS with period M and at time k, Q;
isab;(k)-bit quantizer. When z(k) is Wide Sense Station-
ary (WSS) one selects the analysis filters H;(k, z) and the
synthesis filters F;(k, z) to be linear time invariant (LTI).
Since z(k) here is WSCS with period M, we assume that
these filters are Linear Periodically Time Varying (LPTV)
with period M. A linear filter with impulseresponse h(k, 1)
iscalled M-periodic, if for all k,I:

h(k,1) = h(k + M,1 + M). (1.1)

Thetimeindex k in H;(k, z) and F;(k, z) recognizes their
lack of time invariance.

Given the autocorrel ation of the WSCS signal z(k), the
psd matrix of the M -blocked version of z(k), whichisWSS,
can befound and will be assumed to be known. We are thus
interested in designing the filters H;(k, z), F;(k, z) by an
energy compaction approach. We shall suitably extend the
idea of an optimum compaction filter for WSCS signalsin
this paper. We show that the optimal orthonormal filter bank
for aWSCS input can be designed by choosing each analy-
sisfilter to be an optimum compaction filter for an appropri-
ately " peeled-off” signal, with the peeled-off signal derived
from the input signal. We first provide useful insight to the
compaction filter design for WSS signals. This analysisis
then paralleled to the case when the input to the filter bank
isWSCS.

In Section 2, we recapitulate the optimum compaction
filter design for WSS signals. The results essentially pro-
vide a different interpretation to the compaction process de-
scribed in [11]. Section 3 then introduces the notion of an



Fig. 1. An N-channel filter bank as subband coder

optimum compaction filter as applicable to WSCS inpuits,
and then describes the energy compaction approach to sub-
band coder design when the input signals are WSCS. Sec-
tion 4 sums the contributions of this paper.

Notation: For compactness, weuse [z(0 : 1 : N — 1)]
to denote the vector

[2(0),z(1),...,z(N —1)],
and [z(0 : —1 : N — 1)] to denote the vector
[2(0),z(=1),...,z(—=N + 1)].
We use [X (2)]" to denote the transposed conjugate of the
matrix [X (z71)].

2. OPTIMUM COMPACTION FILTERS FOR WSS
SIGNALS

Consider fig. 2. Thefilter H(z) is said to be an optimum
compaction filter for the zero-mean WSS input signal z(k)
if it maximizes the output variance o2 subject to the con-
straint that | H (w)|? is Nyquist-N, that is,

2
Z|Hw—ik =N, VY.

(k)

_>H

s(k) LN v(kz

Fig. 2. lllustration for compaction filter

We now state a result which essentially describes the
optimum compaction filter design process for WSS signals.

Theorem 2.1 Consider fig. 1 with WSSz (k). Given that
Hy(w) is an optimum compaction filter of the signal =(k).
Then the analysis filter H;(w) is an optimum compaction

filter of 2 (k) = (k) — 2kl (k), ..., and Hy 1 (w) is
an optimum compaction filter of z (N =1 (k) = (V=) (k) —

HN\;%(W) ﬂ?(N_2) (k‘)

Observethat Theorem 2.1 is adifferent interpretation to
the design methodology discussed in [11].

i(k)3. OPTIMUM COMPACTION FILTERSFOR WSCS

SIGNALS

Definefori = 0,1,

zi(k) =z(2k — 1), si(k) = s(2k — 1),
and denote the M blocked versionsof z;(k), s;(k),i = 0,1
as
#i(k) = [z(2(Nk — (0:1: N — 1)) —i)]7T,
5i(k) =[s(2(Nk—(0:1: N —1)) —i)]”.
Call

z(k) = [zg (k), 2] (k)]
§(k) = [55 (k) 5T ()]

Every LPTV system with period M can be interpreted
as a multiple-input/multiple-output system LTI system with
M inputsand M outputs. Let h,y,, (k,1) bethe M x M im-
pulse response matrix relating z ,, (k) and §,,, (k). Obviously
thisisan LTI system, and we can define

= Z T (K)z7F
k

Notethat Hoo(z) and Ho, (=) respectively represent the LTl
systems relating the blocked even and odd samples of the
input of the M -periodic system H (k, z) to the blocked even
samples of the output of H (k, z).

Definethe 2M x 1 vector

o(k) = [vo(Nk—=(0:1: N=1)),0;(Nk—(N—1: —1:0)].

Even when the analysis and synthesis filters are LPTV,
the polyphase representation shown in fig. 3 still holds,
[12]. The analysis and synthesis sidesin fig. 1 are respec-
tively replaced by the 2\ x 2 LTI operators E(z), R(z).
Note that the operator E(z) relatesthe 2M x 1 vectors z (k)
and o(k).

Perfect reconstructability reducesto the requirement that
R(z) = E~'(z), and orthonormality to the requirement that
foral w

[E@)]' Bw) = [RW)]' Rw) =T

Since S; (w), the psd matrix of Z(k), is positive definite
Hermitian symmetric, it can be expressed as

5() = U@)Aw) [0w)]' (32)
with U/ (w) unitary at all w, and

A(w) = diag {Xo(w), -
obeying at all w

.S\QN_l(w)} (33)

Ai(w) > Aig1(w) > 0. (34)



Further, S;(w), the psd matrix of o (k), obeys
Silw) = Bw)S:@) [Bw)] . @9

The canonical solution to the subband coding problem
under dynamic bit allocation and static bit all ocation treated
in[1], [6] respectively is given by

E(w) = [U(w)]T. (36)
Inthis case Sj(w) = A(w). The Hy(k, z) and F;(k, z) can
be obtained by unblocking E(z) and E~1(z).

The main points of this Section are to define an opti-
mum compaction process for WSCS signals that leads to
the design of the subband coder. To do so we first de-
fine the M -periodic optimum compaction of an M -periodic
WSCS process. The definition of optimum compaction of
aWSS signal given earlier involves afilter H(z) for which
H(2)H*(z7!) is Nyquist-2. For an LPTV system H de-
fine the adjoint filter H® whose impulse response h*(k, 1)
is related to the impulse response h(k, 1) of H by

he(k,1) = h* (1, k). (3.7)

Observe that the adjoint of an LTI systems with transfer
H (z) has transfer function H*(z~!). Thus the analog of
asystemwith transfer function H(z)H *(z~!) inthe Linear
Time Varying (LTV) case, isthe LTV system HH °.

q

!
<
l&w

Fig. 3. Blocked polyphase representation

We now givethe appropriatedefinition of LTV Nyquist-2
filters. When H (k, z) is M -periodic then H H® is Nyquist-
2iff for dl w,

o]

ZEloo(w)al';ﬁn(w)] [H , )]T
01 \W

=1. (38

We now definethe optimum compaction processfor WSCS

signals.

Definition 3.1 Consider fig. 2, with z(k) WSCS with pe-
riod M, H LPTV with period M,and N = 2. Then H isan
optimum compaction filter for z(k) if subject to H H * being
Nyquist-2, and for some index set {ko, k1, -+, kn—1} =
{0,---, M — 1}, it simultaneously maximizes the partial
variance sums

Z o2 (ki) (3.9

forall0 <l < M —1.

Observe that this definition is targetted to accomodate the
fact that v(k) is WSCS with period M. Consequently M
variance values must be considered. In the sequel, we will
call an optimum compaction filter canonical if in (3.9),

ki =1i.

Note that even the canonical optimum compaction filter is
nonunique. This is consistent with the fact that LTI opti-
mum compactionfiltersfor WSS processes are al so nonunique,
[11].

We now state the main results of this Section.

Theorem 3.1 Consider fig. 1 with N = 2, H;(k,z) M-
periodic, and z(k) WSCSwith period M. Thenthe H(k, z)
provided by the canonical solution (3.6) is an M -periodic
canonical optimum compaction filter of z(k).

Denoteby S, (w) the M x M psd matrix of the M x 1

WSS vector (k) obtained by blocking z (k). We can write
Se(w) = V(W) AW)[V (@)

with V' (w) unitary for al w. Denote

V=" vl |

(3.10)
Theorem 3.2 Given Hy(k,z) is an optimum compaction
filter of the WSCS signal z(k). Then thefilter H,(k, z) is
an optimum compaction filter of the signal obtained by un-

blocking the 2/ x 1 vector 7(1) (k) = [f/(w) - ngq #(k),

where Ho(w), a2M x 2M matrix, isthe 2 blocked ver-
sion of Hy(k, z).

Theorem 3.1 together with 3.2 defines the optimum com-
paction filter design for WSCS signals.

4. CONCLUSIONS

In this paper, we presented the optimum compaction filter
design for the subband coding of WSCS signals. We first
gave a different interpretation to the compaction processin
the case of subband coding of WSS signals. Thedesign pro-
cedure was then extended to WSCS signals by considering
a 2-channel subband coder. We showed that the analysisfil-
ters of the orthonormal filter bank can be designed sequen-
tially by an optimal compaction process, with the optimum
compaction filters designed with the apriori knowledge of
just the second order statistics of the input WSCS signal.
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ABSTRACT

Thispaper considersdiscrete multitone modulation (DMT)

for multiuser communications where different usersare sup-
ported by the same system. These users may have differing
quality of service (QoS) requirements, as quantifi edby their
respective hit rate and symbol error rate specifi cations. Our
goa is to minimize the transmitted power given the QoS
specifi cationsfor the different users, subject to the knowl-
edge of colored interference at thereceiver input. In particu-
lar wefi ndan optimum bit loading schemethat distributesthe
bit rate transmitted across the various subchannels belong-
ing to the different users, and subject to this bit allocation,
determine an optimum transceiver.

1. INTRODUCTION

The discrete multitone modulation (DM T) channel cod-
ing scheme has established itself as an effective high rate
data communication technique in both wired and wireless
environments and is used for examplein ADSL and HDSL,
[1]. We consider DMT in a multiuser environment. Thus
the DMT system studied here supports multiple users, with
varying quality of service (QoS) requirements, quantifi edby
their respective bit rate and symbol error rate (SER) specifi -
cations.

Specifi cally, consider the DMT system asinfi g. 1 which
depicts an M -subchanndl fi Iterbank model of a DMT sys-
tem. We consider an overinterpolated (N > M) fi Iterbank
as the transceiver. We assume that the channdl C(z) isFIR
of lenth x (preequalization is assumed to have been done),
and v(n) is additive colored noise with known spectrum.
Thusfor example v(n) could represent co-channel interfer-
ence. Note, [8] provides models for cochannel interference
inavariety of settings. To mitigate intersymbol interference
(1Sl), a form of redundancy is incorporated by choosing
N = M + k. The transmitting fi Iters, ) (z), and the re-
ceiving fi lters, Hy(z), are constrained to length N, and act
as modul ating and demodul ating transforms respectively. In

This work was supported by US Army contract, DAAAD19-00-1-
0534, and NSF grants ECS-9970105 and CCR-9973133

a DFT based DMT implementation [1], the IDFT and DFT
are used as the modulating and demodulating transforms
respectively.

In this paper, as in [5] we will consider more genera
transformations leading to a generalized DMT system. To
capture amultiuser environment, we assumethat there are L-
users each having been assigned M / L subchannels. Further
the k-th user requires abit rate of ¢, and an SER of no more
thann. Our god isto select F; and H;, and distribute the bit
rates among the various sub-channels to achieve the above
specifi cationswith the minimum possibletransmitted power .
The problem addressed here thus directly generaizes that
in [5], which also addresses the same power minimization
issue, but assuming a single user subject to only one bit
rate and SER constraint. The multiuser setting renders the
optimization problem highly nontrivial in comparison to the
single user case. Further we show as much as 8 dB and 12
dB savingsin transmit power in our simulations with general
DMT systems over DFT based DMT systems with optimal
bit alocation and no bit alocation respectively.

Related literature includes [4] which develops fast load-
ing algorithms using table lookups and a fast Lagrange bi-
section method for a single user setting. [7] considers a
single user optimization of the transceiver mutual informa-
tion. [3], considers the optimum bit loading problem when
two users are present.

Section 2, defi nesthe generalized DM T system and for-
mulates a precise mathematical problem. Sections 3 and 4
respectively consider the bit rate allocation and fi Iter selec-
tion problems. Section 5 gives simulations.

2. DMT BASED MULTIUSER SYSTEM M ODEL

In this Section we give some preliminaries. Specifi caly,
in Section 2.1, we recount the details of the generalized
DMT system provided in [5]. Section 2.2 providesaprecise
optimization problem.

2.1. Polyphaserepresentation of the DMT system

Consider the fi Iterbank based DMT model in fi g. 1. v(n)
is a zero mean wide sense stationary additive noise. As
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Fig. 1. Filter bank based DMT model.

the filters Fi,(z) and Hy(z) have lengths < N, we may
write the following polyphase decompositionS' Fr(z) =
SN TG, and Hi(2) = SN 5" 2 Sk.4, with constant
G, ; and S; ;. Defi nethe N x M matrix G with ¢j-th ele-
ment G; ; and the M x N matrix S with elements S; ;. Call
the constant matrices G and S the transmitting and receiving
matrix repectively. Then with x and x the vector of the sig-
nals z; and &;, repectively, v, the blocked version of v(n),
one has the equivalent systemin fi g. 2. Here the pseudocir-
culant matrix C(z) [9], is formed by the coeffi cientsof the
FIR channel C(2) = co + 1271 + ... + c.2™". It obeys:

C)=[Co Ci(2) | (2.1)
where Cq isconstant, N x M, and C1(z) isN x k. Note
the knowledge of the autocorrelation of v, yields the auto-
correlation matrix of v.
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Y
Y
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Fig. 2. Polyphase representation of the DMT system.

For DMT systems using zero padding, the transmitting
and receiving matrices are respectively given by

G:[WT], S=T'[W W,] (22

0

where W isthe M x M unitary DFT matrix with [W]; ., =
LMe_jZle, Ilbm = 0,...,M — 1, Wy isthe M x &
submatrix of W having thefi rstx columnsof W, andT" isthe
M x M diagonal matrix with elements that are the M -point
DFTs of the channel impulse response, [1]. We consider
more general DMT systems that can lead to reduction in
sidelobes and better noise rejection properties of the fi lters.

The transmitting matrix of such ageneral DMT is given by

o-[5)

2.3)

— TN = Fo(z) C(z) Ho(z) > L N —
‘”%»TN—> Fi(2) «I LHl(z)—»J,Ni.

371\4_—> TN —>F'M_1(Z)—4 ‘—bHM_l(z»—b J,N —>_1

where G isan arbitrary M x M unitary matrix. The con-
dition for perfect reconstruction (PR) is given as

SC(z)G =1 2.4
Using (2.1) and (2.3), the PR condition reduces to
SCoGo =1 (2.5

Using singular value decomposition, Cq can be written as

Co=[U U] [ A ] VT = UAVT (2.6)
N’ 0

U

where U and V' arerespectively N x N and M x M unitary
matrices whose columns are the eigenvectors of CoCo” and
Co T Cyo. Aisthe M x M diagona matrix with diagonal
elements that are the singular values of C.

Using (2.6), one clear choice for S satisfying (2.5) is

S =GIvA-tUl (2.7

2.2. Problem defi nition

The optimum bit loading problem is to fi ndthe best bit rate
alocation scheme to minimize the transmit power, under
different bit rate and SER budgets of the users. The optimal
transceiver is then designed to minimize the power subject
to optimum bit loading.

Assumethere are r users, with each user being all ocated
L subbands (infig. 1, M =rLand N = M + k). Let
the input power in the j-th subband of the k-th user be

;- Dueto PR, this is also the output signal power o2 .
in the j-th subband of the k- th user. Let the output noise
power in this subband be o2 . and bj . be the number
of bits alocated in this subchannel Due to different QoS
requirements, we may have different bit rate constraints for
the users. The average number of bits for the k-th user is
b = 1 j:—01 b,.x. However we need to account for the
reduction in bit rate dueto the zero padding. The average bit
budget for the k-th user isthen t;, = £b, = £ 327" b 4.

With a high bit rate assumption made on the modulation
system, we have, [5], for the k-th user

Ugj.k = ck22bj‘kagj.k
where the constant ¢, depends on the SER 7. We seek to
minimize the average transmission power given by

r L-—1
;Z; (2.8)
J
r L—1
Mzzckz%w 2 (2.9)
k=1 j=0



subject to the bit rate budgets

1 L-1
tk:Nij,k, k=1,...,r (2.10)
7=0
and the PR requirement (2.7).

3. OPTIMUM BIT ALLOCATION

The problem of minimizing (2.9) under the set of constraints
(2.10) is a constrained optimization problem. Using the
AM-GM! inequality and (2.10),

r L-—1

—_— 1 2b_7' k 2
f= i Z Z 2oy (3.11)
k=1 5=0
I r L-1
> D> e[ 2%0a? Yt (312
k=1 j=0
c T L-1
= > e @V ] o2 VE (3.13)
k=1 7=0
with equdity holding iff for al j, k:
L—1
_ N 1 2 \1/L 1 2
bjk = ftk+§l092(jl:[0 Ue]-‘k) —51092(061_‘,0). (3.149)

This is the optimum bit allocation strategy. The optimal
transceiver design isto fi ndmatrices S, G so asto minimize

T L-1
J= Z(O{k H aj,k)l/L (315)
k=1 7=0
where
ap = ckQQNtk a; k= Ugj.k' (316)

Observe, if one chooses L = 2, and a, = o for all k, then
(3.15) reduces to the optimization function considered in
[2], for the subband coding of cyclostationary signals.

Optimal arrangement: Observe, [2, 6], that given aset of
positive numbers {6, }2*_ |, 8x > &x41 the minimum among
al possible 3 8y, 0y, i 341 dkdai—kt1. Thusamong the
various permutations of a; i, any that minimizes (3.15) must
have the following property:

L—1 L-—1
Uty 2 ey = ary [ @ik <ans [[ @i (317)
j#m j#n
and
L—-1 L-1
Ay > Oy = H Qjm < H Qjn. (3.18)
§=0 =0

1The arithmetic mean (AM) of a set of positive numbers is greater than
or equal to their geometric mean (GM), with equality iff al the numbers
are equal.

4. OPTIMUM TRANSCEIVER DESIGN

In this Section we address the problem of fi Iterselection to
minimize (3.15). This reduces to selecting a unitary matrix
Gp. Given that the matrices in (2.6) are known, (2.7) fi »es
S. Observethat the situation in fi g. 3 prevails, and R, the
autocorrelation of €, is known. Further the autocorrelation
matrix of e is given by

R. = GYR:G,, (4.19)

and that a, , in (3.15), are simply the diagonal elements of
R..

We need a few results from the theory of majorization

that will be usedin solving the optimization problem at hand.
We will fi rstintroduce the notion of magjorization and Schur
concavity [6].
Defi nition4.1 Consider two sequences z = {z;}", and
y = {yi}q withz; > 2,47 and y; > y,41. Then we say
that y majorizes x, denoted as z < v, if the following holds
with equality at k = n

k k
Yor<y i 1<k<n
=1 1=1

Defi nition4.2 Areal valued function ¢(z) = ¢(21, - - -, 2x)
defi nedonaset A C R™ issaid to be Schur concaveon A if

r<y omA = ¢(z)2y).

¢ is strictly Schur concave on A if strict inequality ¢(x) >
¢(y) holds when z is not a permutation of y.

Wewill now state atheorem that resultsin atest for strict
Schur concavity. We denote

9¢(z)

2
b (2) = o 0°¢(2)

- Bzié)zj )

and  ¢(; j)(2)

Theorem 4.1 Let ¢(z) be a scalar real valued function de-
fi nedand continuous on D, and twice differentiable on the
interior of D. Then ¢(z) isstrictly Schur concave on D iff

(i) ¢ issymmetric in its arguments,
(i) ¢(x)(z) isincreasingin k, and

(i) ¢ (2) = bty (2) = brpy(2) — breppn) (2) —
Dh+1,k) (2) + ¢(k+1,k+1)(2) < 0.

Theorem 4.2 If H isann x n hermitian matrix with diag-
onal elements hy, ..., h, and eigenvalues Ay, ..., A, then
h < XonR".

To connect the results from majorization theory devel-
oped to our optimization problem, we state the following
lemma
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Fig. 3. Recelver block diagram.

Theorem 4.3 The real valued scalar function J as defi ned
in(3.15) under the optimality conditions (3.17-3.18) isstrictly
Schur concave.

In particular as the search of G isrestricted to unitary
matrices, if one chooses G to be Q2 amatrix of orthonormal
eigenvectors of R;, then R, isadiagona matrix containing
the eigenvalues of R;. Note that diagonal eements of R,
are afj.k . Thus from theorem 4.2, this choice of G, yields
a seguence of afj . that majorizes all other achievable se-
guences. Consequently if arranged optimally, Theorem 4.3
holds, that such a sequence will minimize (3.15). It remains
simply to arrange the eigenvalues of R; among the afj_k,
through exhaustive search if need be, so that an arrange-
ment that minimizes (3.15) is obtained. Thusfor a suitable
permuation matrix, P, the optimizing G is

Go = PQ. (4.20)

5. SIMULATION RESULTS

In this section, we compare the trasmitting power of the
DFT based DMT under no bit allocation and optimum bit
allocation with our optimum transceiver. We assume the
channel tobe C(z) =1 + 0.5z~1, and anoise source v(n)
whose power spectral density is shown in fi g. 4. The plot
shows that there is an 8 dB saving in transmit power with
our design over the DFT based DMT under optimum bit
allocation, and a 12 dB improvement over the conventional
DMT with no optimum bit allocation. We however note that
there may exist noise environments where the DFT based
DMT performs as well as our optimal design.

6. CONCLUSIONS

In this paper, we have presented an optimum bit allocation
strategy and transceiver design for minimizing the transmit
power when different users have varied QoS requirements.
Simulations confi rmthe effi cagy of our results.
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OPTIMUM DMT BASED TRANSCEIVERS FOR
MULTIUSER COMMUNICATIONS
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Abstract

This paper considers discrete multitone (DMT) modulation for multiuser
communications when multiple users are supported by the same system, and a
zero padding redundancy is employed at the transmitter output. These users
may have differing quality of service (QoS) requirements, as quantified by bit
rate and symbol error rate specifications. Our goal is to minimize the transmit-
ted power given the QoS specifications, subject to the knowledge of the second
order statistics of the colored interference at the receiver input. In particular
we find an optimum bit loading scheme that distributes the bit rate transmit-
ted across the various subchannels belonging to each user, and subject to this
bit allocation, determine the optimum transceiver. A major conclusion of this
paper is to demonstrate that even though the optimum bit rate allocation dif-
fers from the single user case, the optimum transceiver is the same, to within
a permutation of the transmit and receive filters, for both the single and the

multiuser cases.
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1 Introduction

The discrete multitone (DMT), modulation channel coding scheme, also known as
Orthogonal Frequency Division Multiplexed (OFDM) system, has established itself
as an effective high rate data communication technique in both wired and wireless
environments. It is used for example in high speed ADSL and HDSL modems, [3],
[16] and has been proposed as the modulation scheme of choice in the Mill Bahama
and Magic Wand wireless ATM systems, [4] as well as in the IEEE 802.11a wireless
standard. We consider DMT in a multiuser environment, specifically when a single
DMT system simultaneously supports multiple quality of service (QoS) provisioned
flows. The various flows may represent different multimedia services such as data,
speech, and video, each endowed with different QoS requirements quantified in this
paper by bit rates and symbol error rates (SER). Our goal is to characterize optimal
DMT systems, employing zero padding redundancy that achieve these multiple QoS
specifications, with the minimum transmission power.

We are motivated by the knowledge that future broadband networks will be ex-
pected to provide a wide range of multimedia services. Thus, even wireless networks
must support video conferencing, voice, and data, with different end-to-end QoS re-
quirements at data rates that can be several orders (e.g. 4G in IMT2000) higher
than today’s second-generation (2G) systems [1][2]. Thus the same OFDM channel
in such future systems will be called upon to deliver data flows with multiple QoS
specifications. Since power conservation is important, data transfer must occur at
the smallest level of permissible power.

Figure 1 depicts the broad contours of DMT communication systems. The basic
idea in this multicarrier technique is to partition the dispersive transmission channel
into a large number of parallel independent subchannels by applying an orthogonal
block transform. Specifically the incoming data stream is converted into M-parallel
data streams each operating, at a rate that is M-times smaller than the original
symbol rate, and each having a distinct carrier. An M-point block orthogonal trans-

formation of these streams of data is followed by a parallel to serial conversion, prior



to transmission through the communication channel. Typically for an FIR channel
of length x, extra redundancy of length x is added at the channel input to infuse
resistance to channel induced ISI. Consequently, the effective rate reduction in each
subchannel is by a factor N, where N = M + k. The equalizer in fig. 1 is used to
keep the effective channel length, x, small. The fact that each data stream operates
at a slower rate reduces the dispersive channel effects it experiences. At the channel
output one performs in succession the operations of redundancy removal, parallel to
serial conversion, and the application of an inverse block transform. In traditional
OFDM, the input transform is an Inverse Discrete Fourier Transform (IDFT) oper-
ation, and the output transformation is a block DFT operation. The redundancy at
the channel input in the standard OFDM is a cyclic prefix. Recently several authors
have proposed more general orthogonal block transforms, and the injection of zero
padding redundancy, [8], [11], [7], [L5] leading to the so called Generalized DMT sys-

tems. It is such a zero-padding generalized DMT system that is the subject of this

paper.
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Figure 1: The DMT system.

The overall system can be captured by the discrete time baseband model described
in fig. 2. The transmitting filters, Fi(z), and the receiving filters, Hi(z), model the
transformation, and redundancy injection and removal operations, and have length

N each. In conventional OFDM, the coefficients of F(z) and Hi(z), are respectively,

3

Noise
_|_

<—5<_ Interference



related to M-point Inverse DFT (IDFT) and DFT coefficients. In this figure the
channel equalizer combination is assumed to have an equivalent discrete time FIR
transfer function C(z) of order . The signal v(k) models the effect of the noise and

interference experienced at the equalizer output.

v(k)
o(k)| TN |~ Fy(2) s(k) C(2) Ho(z) — | N | Zo(k)
3:1@, TN = Fi(z) Hi(z) | | N ﬂ(’k)
S LY I S PR by (o) | v R R

Figure 2: Filter bank based DMT model.

Several authors have studied the optimum trasceiver design in the single user case
[19], [11], [10], [22], [13]. While [11], [10] and [22] are concerned with optimizing
the transmitted power, [19] focusses on the maximization of the mutual information
between the trasmitted and received signals. We explain the underlying concept
of the optimization procedure by taking the example of [11], as it most directly
influences the development of this paper. Specifically, [11], assumes no equalizer,
zero padding redundancy, known channel, and noise v(n) of known power spectral
density (psd) modelling co-channel interference. This is partially motivated by the
fact that in HDSL applications, the dominant interference is generated by near end
cross talk (NEXT), [3]. Assuming a single user framework, subject to a specified
target SER, average bit rate, [11] seeks to optimize against the transceiver structure,
i.e. the transmit and receive filters, and the number of bits/symbol assigned to each
subchannel, to minimize the transmitted power. This is done under the assumption
of perfect reconstruction (PR), i.e. that the transceiver output equals the transceiver
input in the noise free case, an orthogonality condition on the transmitter, and the
use of zero-padding redundancy. These ideas are extended in [12] to more general

settings.



The approach of [11] can be best characterized as water-pouring. Suppose a given
set of subchannels see deeper channel nulls or experience higher levels of cochannel
interference. Then the bit loading scheme must assign fewer bits/symbols to these
subchannels. To avoid too many of such “low performing” subchannels, the subchan-
nel selection process must try to squeeze out problematic frequency bands with more
adverse conditions as best as one can, specifically by forcing channel nulls or interfer-
ence spectral peaks, to occupy as few subchannels as possible. In essence, [11], [12]
develop formalisms that capture these tasks.

In this paper, we extend the notions developed in [11], to a multiuser environment.
Specifically we assume that there are n-users with each assigned M /n subchannels.
Further the k-th user requires a bit rate of b, and an SER of no more than .
Our goal is to select filters Fj(z) and Hy(z), and distribute the bit rates among the
various sub-channels, to achieve the above specifications with the minimum possible
transmitted power. Asin [11] we assume that a zero-padding redundancy is employed
and that the transmitter satisfies an orthogonality condition.

Past treatment of optimum resource allocation in a multiuser setting, is restricted
mostly to bit loading algorithms. Loading algorithms using efficient table lookups
and a fast Lagrange bisection search method for a single user setting are developed
in [10]. [6] considers a water-filling approach to the bit loading problem when two
users are present. Other related papers are [24], [26], [27], each of which provide
algorithms for bit and power allocation under a multiuser setting. None considers
filter optimization.

Section 2 ties the DMT model of fig. 1 to the filter bank model of fig. 2 It also
presents a polyphase representation of the DMT system that facilitates the optimiza-
tion task central to this paper. Section 3 converts the power minimization problem
to a precise optimization problem. Sections 4 and 5 consider bit loading and fil-
ter selection respectively. Section 6 provides numerical examples. Section 7 is the
conclusion.

Notation: In the sequel, the superscripts (.)7, () will stand for the transpose,

and Hermitian transpose respectively. I, will denote the M X M identity matrix.



2 DMT based multiuser system model
In this Section we consider the generalized DMT structure of [11], and tie it to the

filter bank structure of fig. 2, and a polyphase representation.

2.1 Generalized DMT with zero padding redundancy

Consider a block of M samples of w(k) in fig.1, i.e.
[w(MFE),w(Mk —1),...,w(Mk — M + 1)]T .

Then the redundancy injection process converts this to an N-block signal by ap-

pending each M-block by additional x zeros to obtain the N-block below, prior to

transmission.
[w(ME),w(Mk = 1),...,w(Mk — M +1),0,...,0],
Thus, with
Iy
Izp = ; (2.1)
kXM
T
s(Nk) s(Nk—1) .-+ s(Nk—N+1) =Tzp [ w(Mk) wMk—-1) - w(Mk—M+1)

(2.2)
The redundancy removal operation is a general linear operation. Specifically with Sy

a suitable M x N matrix,

T
p(Nk) p(Nk—-1) --- p(Nk—N+1)

(2.3)
Define in fig. 1, Gy and Sy as the M x M transmitter and receiver transform

matrices respectively. In the sequel, as in [11], we assume G is unitary, i.e.,
Gl Gy = 1. (2.4)

Define

5, [ F(ME) r(MEk—1) - r(Mk—M+1)

T

T



and
T

(k) = | &o(k), &1(k), ..., Zaa(k) | - (2.6)
Define also the N-fold blocked version of the channel-equalizer combination C'(z) =

co+cz V4 ... 4+c.2 " to be

Co :_1CN,1 .. ;_101
-1
(&1 Co Z Cy
C(2) = : (2.7)
| CN—1 CN—2 e Co

with ¢; = 0, for all Kk < ¢ < N. The above matrix can be written as:

i) =| o Cals) | (2.8)

where Cy, is an N x M, constant matrix, and Cg(z) is N X k.

With v(k) the noise and interference effect at the output of C(z), define

T
o(k) = | o(Nk), o(Nk—1), ,..., v(Nk—N+1) (2.9)
a the N-fold blocked version of v(k). Then one has

2.2 Polyphase representation and perfect reconstruction

All three structures discussed can be viewed as being represented by the scheme in

fig. 3, where the N x M matrix G and M x N matrix S are given by
S =951, G =1LzpGy. (2.11)

Since the output of G and the input to S in fig. 3 are respectively, the N-fold blocked
versions of the channel input and the equalizer output (see fig. 1), one has, [21], the

familiar transmultiplexer structure of fig. 2, where with

N—-1 N-1
Fk(Z) = Z Z_ZGi7k, Hk<2) = Z lek,ia (212)
=0 =0

=~I
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Figure 3: Polyphase representation of the DMT system.

G =[GiliZoito S = [Sdiloito - (2.13)
Observe, Fi(z) are each of degree M — 1, and H(z) have degree N — 1.

We impose the perfect reconstruction (PR) condition:
SC(z)G =1, (2.14)
i.e., in the absence of noise/interference
(k) = z(k), for all k.

In other words, the DMT system has no Inter Symbol Interference (ISI).
To obtain a more useful characterization of PR, consider the singular value de-

composition of Cy, defined in (2.8):

A
CL=U
0

]V”z(hAV” (2.15)

where U and V are respectively N x N and M x M unitary matrices whose columns
are the eigenvectors of C1Cr and CL¥Cyp. A isthe M x M real, positive definite
diagonal matrix with diagonal elements that are the singular values of Cy. Then,
because of (2.10), given Gy, the class of all S enforcing PR is completely characterized
by

S = 5,5 = GEVA™! [ I, A ] vl (2.16)

where A is any arbitrary M X x matrix. In the sequel it will be useful to pratition U

as
v=|u vl (2.17)

where Uy is N X M and Uy is N X k.



Filter selection for power minimization subject to optimum bit rate allocation will
be performed by optimizing against M x M unitary Gy and the arbitrary matrix A.
Once Gy is found (2.11) provides G, just as Gy and A together with the knowledge
of Cy, provides S through (2.16). The filters F, Hj, can then be found using (2.12)
and (2.13).

3 Power Minimization: Formulation

We now give a precise mathematical formulation of the multiuser power minimization
problem defined broadly in the Introduction. To recount, n users are assigned L
subchannels each; the precise channel assignments will emerge from the optimization
process. The k-th user must meet a maximum SER of 7, and must maintain a bit
rate by. Thus, assuming that b;, is the bit rate sustained in the j-th subchannel of

the k-th user, one must have for all 1 < k£ < n,
1 L-1

b = ~ 2_% bj k- (3.18)
j=

The goal is to assign bit rates among the various subchannels and select the filters
Fi(z) and Hy(z) so that the target SER is met with the minimum collective trans-
mitter power, subject to PR, constraint (3.18), and the orthonormality conditions
particular to the scheme.

We do not require each user to employ the same modulation scheme. Thus the
problem considered here generalizes [11] in several important respects: (A) It has to
contend with n separate bit rate budgets (3.18) as opposed to a single budget in [11].
(B) Separate modulation schemes are permitted for different users. (C) Different
users may have different SER requirements.

To achieve a given SER, most modulation schemes, with b-bit symbol constella-
tions, b large, require an output SNR of d2° with d > 0 determined by the SER and
the modulation scheme. Thus for example, for a b-bit square QAM the SER is given
by

n=4 <1 — L) Q ( %) ~4Q ( 3S2$) ,  when 2° > 1. (3.19)

9



where

Qa) = /aoo %eﬂﬁdm
Thus for large b, SNR= d2" with d = 1[Q ()] > 0. Consequently, since under
the PR condition the output signal power equals the input signal power, in the j-th
channel of the k-th user
oy, = d2"*al (3.20)

where o2,
7.k

is the output noise variance in this subchannel and d; is a constant de-
termined by the SER and modulation scheme used for the k-th user. Because G
is unitary, in the DMT system with zero padding redundancy, the total transmitted

power equals
n L-—1 n L-1
Yo > o, =3 di2kal (3.21)
k=1 j=0 k=1 j=0
Now observe that Uz]_ . are the diagonal elements of the output noise autocorrela-

tion matrix R.. We note that

R. = GI'RG, (3.22)
where because of (2.16)
vl Iy
R=VA~ [ Iu A ] "1 R; [ Uy U, ] MolATwE (3.23)
Uit Al

Here R; is the known autocorrelation matrix of (k) and the knowledge of the channel
equalizer combination provides A, U; and V from the SVD of Cy.

We then have the following formal statement of the problem to be solved

Problem 3.1 Given di,b., M X M positive definite, Hermitian symmetric, R;, find
bir, M xr, A and M x M unitary matriz Gy such that with azi‘k the diagonal elements
of R as in (3.22) and (3.23), (3.21) is minimized under (2.4) and (3.18).

We will adopt a three step approach to solving this problem.

e Step I: Subject to a given choice of sz .» Go and A, find the optimum bit rate

allocations b; .

10



o Step II: Given A find the optimizing Gj.
e Step III: Find the optimizing A.

Such a separation becomes possible due to the following considerations. Observe
that ag]_’k are simply the diagonal elements of R.. Consequently they only depend
on Gy and A and are independent of the selected b;;. Further, given any choice of

o2 , the optimum bit rate allocations b;, produced by Step I, transforms (3.21) to

ej,k7
an expression that is in fact independent of b; ;. and dependent only on o2 | in turn
5 J 5.k

determined by Gy and A, and by and dj. supplied by the problem specification. Thus
Step I can be conceptually separated from the selection of Gy and A.

Similarly, regardless of the choice of A, Gy yielded by Step II reduces (3.21) to an
expression that is entirely determined by the eigenvalues of the matrix R in (3.23).
These eigenvalues are of course independent of GGy and determined exclusively by A.

Thus Step III need only find the A that renders these eigenvalues to be the most

favorable. Thus indeed the separation above is justified.

4 Optimum bit rate allocation

The two components to the optimization problems considered in Section 3 are opti-

mum bit rate allocation, i.e. selection of the b, and filter selection. In this Section

we ask: Given certain az]_'k, how does one allocate bit rates b;; to minimmize (3.21)7
The problem of minimizing (3.21) under the set of constraints (3.18) is a constrained
optimization problem. Using the AM-GM inequality, which states that the arithmetic
mean (AM) of a set of positive numbers is greater than or equal to their geometric

mean (GM) with equality iff all the numbers are equal, and (3.18),

n L-—1 n L—1
SN d2bike? > LY di([] 2902 )VE (4.24)
k=1 j=0 " k=1  j=0 "
n ] L-1
= LYy a2 [T a2 )" (4.25)
k=1 J=0

with equality holding iff for all ¢, 7, k:

ikg? = hikg?
7.k €k

11



This in turn requires that for all 7, k:

T 1 L—-1 1
bik = —bi + 5 logy(T] 02, )" = Slogy(a?, ). (4.26)
L 2 iZ0 Js 2 7,

This is the optimum bit allocation strategy. Note that as in [11] this bit allocation
strategy does not impose the obvious requirement that the b;; be positive integers.
Nonetheless by suitable rounding off it represents a good approximation of the at-
tainable minimum.

The optimal transceiver design is to find matrices A and Gy so as to minimize

n L—1
T =3 (e [T a)"" (4.27)
k=1  j=0
where
ap = dp2V >0, ajp = aﬁm > 0. (4.28)

Observe that this cost function depends only on by, di and og]_k, and not on the the
particular selection of b; i, reinforcing the point made at the conclusion of the previous
section.

We note that the setting in [11] considers minimization of the cost function
11 - (4.29)
jk

The altered nature of the cost function underlying the multiuser case of this paper,
makes the extension to this setting nontrivial.

Given a set of aj, o4 in (4.27) it behooves us to ask the following question:
Which ordering of a;z, oy leads to the smallest value of J7 To answer, we provide
the following extension of a result by Hardy and Polya, [14].

Lemma 4.1 Given a set of positive numbers {6k}zl:1, with 6 > Opy1. Consider
S Ok, Op, . with &, , 6y, distinct for all k. Then this quantity attains its minimum

value iff whenever for some i € {1,2}, o, > 0, then o, < by, 1 # 5.

Proof: Sufficiency is in [14]. Suppose without loss of generality that 617 > ¢9; and
612 > 522. Then

511(5124-(521(522—(511522+521<512) = 511((5‘12—522)—(521(512—522) = (5‘11—521)(512—522) > 0.
(4.30)

12



Hence the result. -

Thus the largest 6; must be paired with the smallest §;, the second largest with
the second smallest, etc. Thus, given ag, k € {1,2,..., L}, among the various per-

mutations of {a;;}, any permutation that minimizes (4.27) must have the following

property:
L—1 L—1
Ay ky > pfy = Oy H Qj ky < a, H Q; k, (431)
j=1,j#m j=l,j#n
and
L—1 L—1
Oy > Oy = H Ajm < H Ajn. (4.32)
j=0 j=0

5 Optimum transceiver design

In this Section we address the problem of filter selection to minimize (4.27). Specifi-
cally we must find an M x M unitary G and an M X k£ A to minimize (4.27) under
(4.31,4.32) and (3.22, 3.23), where a;, are the diagonal elements of R..

Much of the development in this section exploits elements from the theory of
Majorization, [14]. Section 5.1 provides a quick primer. Section 5.2 considers the
selection of Gy given and R in (3.23), i.e. given A. Section 5.3 characterizes the

optimum A. Section 5.4 consolidates these results.

5.1 Majorization and Schur Concavity

We first introduce the notion of majorization, [14].

Definition 5.1 Consider two sequences v = {;}_, and y = {yi}l_, with x; > x4y
and y; > yir1. Then we say that y majorizes x, denoted as x < y, if the following
holds with equality at k =1



If y majorizes x, then any permutation of y also majorizes any permutation of x.

The following facts are self evident.

Fact 1 Ifx <y then x <" y.

Fact 2 If v <" y and y <V q then z <V q.

Fact 3 Suppose a = {a;}'_,, a; > 0, the (z +a) <"V z.
We also have the following Fact from [14].

Fact 4 Consider any M X M Hermaitian matric R with eigenvalues \y > o > ... >
A, and an M X M matriz R., which obeys (3.22) for an M x M matriz Gy. Then
the diagonal elements R.;; of R. obey

{Reiibili < {M,. o A} (5.33)
We also note the following important result from [14].

Lemma 5.1 Consider two M x M Hermitian matrices ()1 and ()s. Suppose the

eigenvalues of Q1, Qo and Q1 + Q2 are respectively \i(Q1), N\i(Q2), and \(Q1+ Q2),

(@1 + Q) < {A(Q1) + M@}y
We now consider the notion of Schur concavity, [14].

Definition 5.2 A real valued function ¢(z) = ¢(z1,. .., 2,) defined on a set A C R"

15 said to be Schur concave on A if
r<y oA = d) > Hy)

o is strictly Schur concave on A if strict inequality ¢(x) > ¢(y) holds when x is not

a permutation of y.

We will now state a theorem that results in a test for strict Schur concavity. We

denote



Theorem 5.1 Let ¢(z) be a scalar real valued function defined and continuous on

D=A{(z1,...,2n) 1 21 > ... > z,}, and twice differentiable on the interior of D.

Then ¢(z) is strictly Schur concave on D if

(i) dwy(2) is increasing in k,

and
(it) d4ey(2) = Ser1)(2) = Sk (2) = Dt 1)(2) = D1, (2) + Pt 1) (2) < 0.
Finally we have the following other important fact from [14].

Fact 5 Suppose ¢(z) satisfies the conditions of Theorem 5.1. Then ¢(x) > ¢(y)

whenever v <" y.

5.2 Selecting G|

Observe that by fixing A one automatically fixes R in (3.23). In this section we solve
the following modified problem addressing step II of the three step procedure referred
to in the foregoing.

Modified Problem: Given an M x M positive definite, Hermitian symmetric, R,
find an M X M unitary Gy to minimize (4.27) under (4.31,4.32) and (3.22), where
a; are the diagonal elements of R..

To this end we have the following pivotal theorem.

Theorem 5.2 The real valued scalar function J with a;j. as its arguments as defined

in (4.27), and oy, a;. positive, is strictly Schur concave under the optimal arrange-

ment conditions (4.31-4.532).

Proof: We note that

_ 1/L
o] 1 (Oék | § azk)
8a]-’k N L a;
Thus if a;, > a,
0. < a.J

8Cl]'7]C - a(lljk.
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Now suppose for some p #m, 0 <i,l < L —1, a;;, > a;,,,. Then from (4.31),

-1 -1
Qp H ajp < Qi H jm
=L =LA

Consequently

aJ 1 (ap ]Lgll,jgéi aj,p) v

da; L (‘Li,p)l_l/L

_ 1/L
< l(amezll,#l“Jﬁm)
. (al,m>(1_1/L)

a.J

Oal’m

Thus condition (i) of Theorem 5.1 is met.

Now observe

‘ B 1/L
9°J _ _(L -1 (@k H]L:ij?e@' aj,k) <0
Also with j # 1,
1 1/L
0%J iy 1 )<Oék | J al,k) 0
Gai,kaaM N L? a; Q| ’
Finally with p # m,
%]
——F = 0.
3aj7p8ai’m
Thus (ii) of Theorem 5.1 always holds. Hence the result. n

We now use this result to solve this modified problem.

Theorem 5.3 Suppose the positive definite Hermitian M x M matriz R has eigen-
values Ay > Ao > ... > Ay, with corresponding eigenvectors i, Vs, ..., Uy . Then the
Gy that solves the modified problem above is as below with P a suitable permutation

matrix.

[ 0]
L3
W H
(S

Go=P| (5.34)

H
U

Further the a;j that result are simply these A;.

16



Proof: From Fact 4 and Theorem 5.1, the optimizing A must have diagonal ele-
ments Ay, Ao, ..., A\yr. Thus the rows of Gg must be the Hermitian transpose of the
corresponding eigenvectors. The permutation matrix P simply arranges these eigen-
values in a way to ensure that an optimum arrangement that minimizes (4.27), with

ajr = A, is attained. L]

In both cases, the optimizing matrix R. is diagonal, i.e. under optimality the
noise components in the various subchannel outputs are mutually uncorrelated. The
optimizing Gy consists of the eigenvectors of R, and the subchannel output noise
variances are the eigenvalues of R, and R respectively. These eigenvalues must be
rearranged between the subchannels to ensure that .J in (4.27) is minimum. This will
in effect specify the permutation matrix P, which, however, may not be unique.

Most importantly, reinforcing the arguments made in the justification of the three
step breakdown of the overall power minimization problem, the cost function (4.27)
reduces under the optimum selection of Gy to one in which the a; . are the eigenvalues
of R optimally arranged. Consequently the selection of A must be guided by the need

to assign these eigenvalues in an optimal way.

5.3 Selecting A

Since the optimizing G results in the cost function having a value obtained by re-
placing a;; by suitably arranged eigenvalues of R in (3.23), Fact 5 and Theorem 5.2,
show that the optimmizing A must be such that the set of resulting eigenvalues of
R must weakly super majorize all possible sets of attainable eigenvalues. As V is

unitary in (3.22), the eigenvalues of R are the same as those of

1 ug' I |4
QA) = A7 |1y A Ry | Uy Uy A
brlfl AH
B /\_1 [ I A ] (/.OHquUQ U({IRgUl LM A_l
- ¢ M
UHIR,U, UHRU, || A

= A7! [UOH RyUy + U RzU AT + AU RyUy + AU RgUlAH] A7Y(5.35)



Now observe that as R is positive definite, and U = [ U, Uy ] is unitary,

UPR;Uy U R3U,

(5.36)
UPR;Uy U R3U,

is positive definite. Thus, the matrices, U R;U,, U¥ R;U, and
USR:Us — U RUL (U RoUY) ™ U Ry

must each be positive definite and nonsingular. Direct verification shows that because

of (5.35),
0(4) = A~ {U()”RgUO — U RU (U RUY) ™ U R
+ [UOH ReUy (UFRU) ™ + A] UP Ry, [AH + (Ul Ry) U R,ﬁUO] }Al.
Define
Qr=A" [UOH RyUy — Ug! RsUy (U ReU) Syl RﬁUO] AT (5.37)
and

Q= A [UOH Ry (UM RUY) ™+ A] U R,U, [AH + (UlRty) T U RﬁUO] AT

(5.38)
Clearly )¢ is positive definite and ()5 is positive semidefinite. Only )5 depends on
A. Defining A\;(2(A)) as the eigenvalues of Q(A), from Lemma 5.1, and Fact 1,

QAL < (@) + A(@) 1
= QAL < (@) + Mi(@2) 1L

Since A\;(Q2) > 0, from Fact 3
{Ai(Q1) + Xi(Q2) 1L, <" {IN(Q) L. (5.39)
Thus, from Fact 2

{M(QANRL <" QL (5.40)
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Thus the optimizing A is one which forces (o = 0, i.e.
H Hp g\ 7!
A= -Uf'R;U, (U] R;UY) (5.41)

This is independent of Gy and the optimum bit rate allocations b; ;. Instead it is
determined exclusively by R;, provided by the second order statistics of v(k), and
U; provided by the SVD of the blocked channel equalizer combination C(z). The

resulting value of R is

-1
R=VA U RsUy — U BsUy (U R0y ) - U RﬁUO] AV, (5.42)

5.4 Consolidation

To summarize, the optimizing A is obtained directly using (5.41) with the channel
characteristics supplying U; and the second order statistics of v(k) supplying R;. This
gives R from (5.42). Gy is the provided by the egenvectors of R permuted so that
with a; the eigenvalues of R, an optimum arrangement of (4.27) is attained. This
gives the requisite Uz]_’k and (4.26) gives the optimum bit allocations b .

It is interesting to note that the solution of A is identical to that given in [11]
for the single user case. Modulo the permutation required to enforce the optimum
rearrangement requirement, the optimizing Gy is also the same as for the single user
case. The only practical effect of the permutations is to rearrange the rows of Gy and
the columns of 9, i.e. rearranging F;(z) and H;(z). Thus, even though the optimum
bit rate allocations differ in the single and multiuser settings, the transceiver itself is

identical.

6 Numerical Examples

We now present two numerical examples illustrating the theory developed in the
previous sections. Qur goal is to compare the required transmission power in three
schemes: (i) DFT based DMT under no optimum bit allocation. (ii) DFT based
DMT with optimum bit allocation. (iii) Zero padding Generalized DMT.
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In all cases the channel/equalizer combination has the transfer function C(z) =
140.2527"

We consider first a two user case, with the same SER requirement and modulation
scheme for each user. The target bit rate of one user is 5/3 of the other. Figure 4,
compares transmit powers of the three schemes listed above (normalized by the same
constant for each user) as the number of channels per user (L) is varied. It also

depicts the power spectral density (psd) of the noise at the equalizer output.
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Figure 4: Noise psd and relative transmitted power levels for schemes (i)-(iii) in the

two user case.

We note that the Generalized DMT provides roughly 8 dB savings in transmitted
power over scheme (ii), and about 14 db over scheme (i).

These experiments are repeated for a three user case, with the same SER require-
ment and modulation scheme for each user. The target bit rate ratios are 2:3:5. Plots
in figure 5, compare the transmit powers with the curves for the four schemes appear-
ing in the same order. Generalized DMT provides roughly 10 dB savings in transmit

power over (ii), and about 15 db over (i).
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Figure 5: Noise psd and relative transmitted power levels for schemes (i)-(iii) in the

three user case.

7 Conclusions

In this paper, we have presented an optimum bit rate allocation strategy and transceiver
design for minimizing the transmitted power when different users have different QoS
requirements. The underlying assumption is that while each user is assigned the same
number of subchannels, the SER and bit rate requirements may vary from user to user,
as may the modulation scheme. A Generalized DMT structure with zero padding re-
dundancy is considered. Simulations demonstrate vastly improved performance over
traditional DFT based DMT structures. It is shown that while the optimum bit rate
allocation strategy differes from the single user case, the optimum transceiver design
is identical in both the single and multiuser cases. Our theory assumes that each user
is assigned the same number of subchannels. A logical extension is to consider the
setting where users may be assigned different number of subchannels in accordance

with their respective priorities.
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On Biorthogonal Nonuniform Filter Banks and Tree Structures

Ashish Pandharipande, Soura Dasgupta

January 11, 2002

Abstract

This paper concerns biorthogonal nonuniform filter banks. It is shown that a tree structured filter
bank is biorthogonal iff it is equivalent to a tree structured filter bank whose matching constituent levels
on the analysis and synthesis sides are themselves biorthogonal pairs. We then show that a stronger
statement can be made about dyadic filter banks in general: That a dyadic filter bank is biorthogonal iff
both the analysis and synthesis banks can be decomposed into dyadic trees. We further show that these
decompositions are stability and FIR preserving. These results, derived for filter banks having filters
with rational transfer functions, thus extend some of the earlier comparable results for orthonormal
filter banks.

Index Terms: Biorthogonal, nonuniform, dyadic, filter banks, tree structures.



Author Information

Manuscript received ________

Affiliation of Authors: Department of Electrical and Computer Engineering, The University of Iowa,
Towa City, 1A-52242, USA.

Email: pashish@engineering.uiowa.edu and dasgupta@eng.uiowa.edu.

Contact Author: Soura Dasgupta.

Work supported by NSF Grants ECS-9970105 and CCR-9973133, and ARO Grant DAAD 19-00-1-
0534.



Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

—_

O 00 N O Ut e W N

T T e e T
© 0 NN O Otk W N = O

List of Figures

A nonuniform filter bank.

An M-channel dyadic filter bank.

An (L + 1)-level dyadic tree structured analysis bank.
An (L + 1)-level dyadic tree structured synthesis bank.
Extended polyphase representation of Hy, F.

A 3-channel dyadic filter bank.

Polyphase representation of filter bank in fig. 1.
Tllustration of invertibility.

Setup and illustration for lemma 3.1.

. Setup and illustration for lemma 3.2.

. An example tree (analysis side).

. Matching tree structured synthesis bank.

. Synthesis bank which cannot be decomposed into a tree structure.

. Tree decomposition of a dyadic filter bank obeying (5.15) and (5.16).
. An equivalent structure to fig. 14(a).

. An (N + 2)-channel filter bank.

. Modified dyadic filter bank.

. A two level tree structured filter bank.

. INustration of Lemma 6.1.



1 Introduction

This paper considers certain structural issues associated with biorthogonal maximally decimated
nonuniform filter banks, with emphasis on studying their relationship to tree structured filter banks.
The class of filter banks under consideration is depicted in fig. 1, with H;(z) and F;(z) rational. Maximal

decimation refers to the condition that

K 1
Y —=1 (1.1)

=0 M
— Hk(z) L ng o Tk = Fr(z) —
Hy(2) L T ny Fi(z)
z(n) Hy(z) L ng T ng Fy(z) &(n)
Analysis bank Synthesis bank

Figure 1: A nonuniform filter bank.

The arrangement to the left of the filter bank consisting of the n;-fold decimators and the analysis
filters H;(z) is the analysis bank, and that to the right with the n;-fold interpolators with F;(z) as the
synthesis filters is the synthesis bank. This filter bank has the perfect reconstruction (PR) property if its
output always equals its input, Z(n) = z(n). It is known, [6], that the analysis and synthesis filters of a
maximally decimated filter bank with the PR property form a biorthogonal system. We will henceforth
use the terms biorthogonality and PR interchangeably.

Of particular interest are dyadic filter banks as depicted in fig. 2, a special case of nonuniform filter
banks wherein K = M — 1, n; = 2t for 0 < i < M — 2 and ny;—1 = 2M~1. The relations between
wavelets and such multirate filter banks have been known for some time: [19], [11], [4], [20] connect filter
banks to wavelet bases. In particular the dyadic filter bank generates Discrete Time Wavelet Transform
(DTWT) bases, [15], while the more general structure of fig. 1 generates wavelet packet bases, [11]. Also
important are dyadic tree structured filter banks (TSFBs). Fig. 3 and 4 respectively depict an (L + 1)-

level dyadic tree structured analysis bank (TSAB) and the corresponding tree structured synthesis bank



(TSSB). These typically capture DTWT bases, [15].

Hy1 | aM-1 1 oM Fy_1
Hy—o L oM-1 1 oM-1 Fyo f
Hy - 14 T4 F -
z(n) H 12 12 R &(n)

Figure 2: An M-channel dyadic filter bank.

Yr+1 (”)

A, 12 yr(n)

00000000

B 12 .
12 F A 1 nin)

By
T yo(n)
Ay 12

Level 1 Level 2 Level L+1

(N

Figure 3: An (L + 1)-level dyadic tree structured analysis bank.

The study of biorthogonal filter banks and tree structures is also motivated by their applications
in image coding and compression. Most transforms used in signal processing are orthonormal, having
the energy preservation property. Orthonormality is however not compatible with phase linearity in the
case of FIR (finite impulse response) filter banks [4], [19]. Biorthogonality on the other hand allows
additional freedom to have arbitrary length linear phase filters. Consequently, in the last few years,

biorthogonal transforms in general, and biorthogonal wavelet transforms arising from tree structures

(2§
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Figure 4: An (L + 1)-level dyadic tree structured synthesis bank.

in particular, are gaining increasing currency in image coding applications, where phase linearity is
desirable. Biorthogonal wavelets have also been used in the design of wavelet filters with binary coeffi-
cients [4], [12]. Other applications can be found in the areas of image compression [5], [13], fingerprint
compression [10], and image coding [3], [9]. Given the importance of biorthogonal wavelets and filter
banks in these wide-ranging applications, it becomes natural to investigate connections between filter
banks and tree structures under the biorthogonality constraint.

The results presented in this paper extend two results by Soman and Vaidyanathan, [11]. Specifically,
[11] shows that (i) every orthonormal dyadic filter bank is equivalent to a tree structured filter bank;
(ii) while this is not true for more general nonuniform filter banks, a general tree structured filter bank
is orthonormal iff its each constituent level is orthonormal.

These results are extended in this work to the biorthogonal case. We show first that a tree structured
filter bank is biorthogonal iff it is equivalent to a tree structured filter bank whose matching consituent
levels on the analysis and synthesis sides are themselves biorthogonal pairs. We then show that a
stronger statement can be made about dyadic filter banks in general: That a dyadic filter bank as in
fig. 2 1s biorthogonal iff both the analysis bank and the synthesis bank can be decomposed into dyadic
trees as in fig. 3 and 4 with each pair of matching levels on the analysis and synthesis sides forming
biorthogonal pairs. 1t is instructive to note that even if the analysis bank in fig. 2, taken as an operator,

is left invertible, there may not exist a synthesis bank of the form in fig. 2 such that the overall filter bank



is biorthogonal. Effectively our result shows that only in such a case is a tree structured decomposition
impossible. We note that using different proof techniques, recently Akkarakaran, [21], has independently
derived certain results on nonuniform filter banks that can be specialized to the results given here.

In Section 2, some preliminary definitions are given. Basic results on extended polyphase matrices
and their invertibility are developed in Section 3. Results related to the decomposibility of biorthogonal
nonuniform filter banks to tree structured filter banks are explored in Sections 4 and 5. Section 4
considers general biorthogonal tree structured filter banks, and Section 5 specializes to the dyadic case.
Section 6 then discusses certain stability and FIR issues related to these decompositions. Section 7

presents conclusions.

2 Preliminaries

The general nonuniform filter bank structure of fig. 1 is closely connected to wavelet packet bases.
Specifically, with f;(n) and h;(n), the impulse responses of the synthesis and analysis filters respectively,

one has that

K
z(n) = ZZyk(m)fk(n— nEm) (2.2)
k=0 m
and
yr(n) = Z hi(m)z(ngn —m) (2.3)

The functions fi(n—ngm) constitute wavelet packet bases, while yx(n) are the corresponding coefficients.

We will call the FB in fig. 1 biorthogonal, if for all z(n),
z(n) =x(n) Vn (2.4)

It can be readily shown from a variation of arguments in [6], [15], that this is equivalent to the require-

ment that, with 6(.) the Kronecker delta,
S il — i) hn (=0 + nl) = 8(m — k)5(1 — 4) (2.5)
This contrasts with the orthonormality property that requires
Z fr(n—ngd) fi(n—npl) = 6(m — k)o(l — 1) (2.6)

and

hi(n) = f(=n) (2.7)



The results presented in the paper are derived using polyphase representations. We now present the
idea of extended polyphase matrices. Assuming that the filters Hy(z) and Fj(z) have rational transfer
functions, in the sequel, we will call Fy(z) and Rj(z) the I-th ng-fold type-I and type-II polyphase

components of Hy(z) and F(z) respectively, if one has

nE—1

Hi(z) = > 2 "Bz, (2.8)
=0
ng—1

Fi.(z) = Z 2 Ry (27%). (2.9)
=0

To obtain a matrix polyphase representation of fig. 1, one must use an additional device from [16]: The
idea is to redraw the nonuniform filter bank in fig. 1 as an equivalent uniform maximally decimated
system. Define N to be the least common multiple (L.c.m.) of the n;. Then observe that fig. 5-(a) is

equivalent to the pg-channel filter bank in fig. 5-(b) with

N
= —. (2.10)
Nk

Now define the pr x N matrix Ej(z) whose ij-th element is the j-th N-fold type-I polyphase
component of 27" Hy(z). Similarly define the N x p; matrix Ry (z) whose ji-th element is the j-th
N-fold type-II polyphase component of 2" F}.(z). Henceforth we will call Ej(z) and Ry (z) the N-fold
extended polyphase representation of Hy(z) and Fj(z) respectively. It is readily seen that in fact fig.
5-(b) is equivalent to fig. 5-(c). Further vi;(n), the output of the downsamplers in fig. 5-(b), are simply
certain samples of yr(n), i.e. vi;(n) = yp(pen +i). Then the N x N matrices

T

E(z) = (2.11)

EL(z) ... El(»)

and
R(z) = [ Ri(z) ... Ry(z) ] (2.12)

are the N-fold extended polyphase representations of the analysis and synthesis banks of fig. 1 respec-

T
T T T .
Ei(2) Ei(2) ... Eil(z)] will be
T
. Under these

tively. Further for any 41,19,...,4;, a subset of {0,1,..., K},

the N-fold extended type-I polyphase representation of [ H; (2) Hi(z) ... H;(z)

conditions, the overall filter bank in fig. 1 has the equivalent representation in fig. 7.

Thus, for the 3-channel filter bank of fig. 6, one has the equivalent representation of fig. 7, with
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Figure 5: Extended polyphase representation of Hy, F}.
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Figure 6: A 3-channel dyadic filter bank.

N =4.

Here, with Ey(z), the 4-fold type-I polyphase components, one has FE(z) given by

Es(z) Eo(z E2(z) Ea3(z)

& ) z
E10(z) En(z)  Eia(z) 3(2) (2.13)
) (

Ey
Ego(z) Epi(z Eg(z) Ep3(z)
Ey

_Z_lEog(z) Z_lE()g(z) E()()(Z) 1(2)

Likewise with Rji(z), the 4-fold type-II components of Fi(z), one has

Roa(z) Roi1(z) Roo(z) zR20(z) ]
R(z) = Ri2(z) Ri11(z) Rio(z) zRso(z) . (2.14)
Ry(z) Ro1(z) Rao(z) Rool(z)

R32(z) R3i1(z) Rao(z) Rio(z) |

Note the structural constraints on R(z) and E(z). We will call the analysis (respectively, synthesis)
bank left (respectively, right) invertible if there is a 1 X (K + 1) (respectively, (K + 1) x 1) operator £
such that the arrangement in fig. 8-(a) (respectively, fig. 8-(b)) is identity. Here onwards we will drop
the qualifiers left and right, that is, the invertibility of an analysis bank will automatically refer to its
left invertibility, and that of a synthesis bank to its right invertibility.

Also, observe that invertibility of the analysis bank necessitates the nonsingularity of E(z) (that
is, det(E(z)) is not the zero function): To see this, suppose in fig. 8-(a), the arrangement rep-
resents an identity operator. Observe tlr;at the input to E(z), see fig. 7, is the blocked vector

z(nN),z(nN —1),...,2(nN — N +1) | . Then since this vector can be constructed by a linear

operation from z(n), and the outputs of E(z) are simply certain rearranged outputs of samples of the

10
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Figure 7: Polyphase representation of filter bank in fig. 1.
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Figure 8: Hlustration of invertibility.

analysis bank in fig. 1, there is an N x N operator L such that ﬁE(z) = I. Since E(z) is a square
matrix, it must be nonsingular. A similar reasoning proves that the invertibility of a synthesis bank
requires the nonsingularity of R(z). Further, it follows that the filter bank in fig. 1 is biorthogonal iff
R(z)E(z) = 1.

Notice that, even if E(z) is invertible, E~'(z) may not have the structure that the polyphase matriz

of the synthesis bank must have. Thus for example, consider an analysis bank with polyphase matrix

[ 149271 1 0 0
1 0 1421 2
E(z) =
1 1 21 9
| 272 227! 11

11



The inverse is then

3z—|—z2 —:—*—222 PR —22?

Eil( ) 1 —24 22 2—32—222 —24 2422 4z 4+ 22°
)= ————

222 4+52+4 —94 22 6+ 2= —6 44z + 22 4z 4 222

241 -22-22 —3:1—-2492: 37145422422 —-2-3z

Observe that E~!(z) fails to obey the structure in (2.14). Thus even if E(z) is invertible, there may
not be a synthesis bank as in fig. 1 that renders the filter bank in fig. 1 biorthogonal. Henceforth
should the analysis bank (respectively, synthesis bank) in fig. 1 be such that there exists a synthesis
bank (respectively, analysis bank) of the form in fig. 1 for which the filter bank is biorthogonal, then

we will call the analysis bank (respectively, synthesis bank) conformally invertible.

3 Some results on extended polyphase matrices

We now present some preliminary results on polyphase matrices, to be used in later sections. Al-
though these results are stated for analysis banks, they trivially extend to synthesis banks as well.
We will say that a matrix P(z) has linearly dependent rows if there exists a rational vector ¢(z) # 0
such that
¢ (z)P(z) = 0.

Lemma 3.1 Consider fig. 9(a) and 9(b) with L = lem(ni,no,...,nym) pi = L/n;, and all filters
rational. The L-fold extended polyphase matriz of the AB in fig. 9(a) has linearly dependent rows iff

the system in fig. 9(b) is identically zero for some transfer functions 6;(z) not all zero.

Proof: Using the p;-fold Type-I representation, 6;(z) = Zfi:_ol Z—jéi’j(zpi) and making use of the
Noble identities, fig. 9(b) can be redrawn as shown in fig. 9(c). Also the polyphase matrix of the
arrangement to the left of the éw(z) in fig. 9(c) is simply the L-fold extended polyphase matrix E(z)
of the AB in fig. 9(a). Redrawing the nonuniform AB as a uniform AB in polyphase form as explained
in the earlier section, E(z) has linearly dependent rows iff él,o(z_) . éM,anl(Z) E(z) =0, with
not all 6;(z) = 0.

Lemma 3.2 Consider fig. 9(a) and 10(a), with L = lem(nyi,na,...,ny) and all filters rational. If
the L-fold extended polyphase matriz of the AB in fig. 9(a) has linearly dependent rows, so does the
N K L-fold extended polyphase matriz of the AB in fig. 10(a).

12
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Figure 9: Setup and illustration for lemma 3.1.
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Figure 10: Setup and illustration for lemma 3.2.

Proof: By lemma 3.1, there exist 6;(z), not all zero, such that the system in fig. 9(b) is identically
zero. We need to show that there exist A;(z), not all identically zero, such that the system in fig. 10b is
identically zero. Consider a system wherein the system in fig. 9(b) is preceded by the system consisting
of G(z) and the decimator N, and the output of fig. 9(b) is appended by a decimator K. This new
system is also identically zero. Now choosing Aj(z) = 1 and X;(z) = 6;(z) for ¢ > 1 makes this new
system identical to fig. 10b provided 61(z) = F(z). Indeed the 6;(z) can be so scaled that 0;(z) = F(z)
provided that F'(z),60;(z) # 0, completing the proof. The case F(z) = 0 is trivial, and for the case

61(z) = 0 we only have to make the choice A\j(z) = 0 instead of A\;(z) = 1. n

4 Biorthogonal Tree Structured Filter Banks

The Introduction had given the example of a dyadic tree structured filter bank. In this section we deal
with more general tree structured filter banks, and discuss conditions under which such a filter bank is
biorthogonal. Some notation for general tree structured filter banks will be introduced first.

A general TSAB is depicted in fig. 11(a). Through the repeated use of Noble identities, any such

filter bank is equivalent to the analysis bank in fig. 1. For example, the analysis bank in fig. 11(a) is

14



equivalent to that in fig. 11(b).

ARl o Ao(e) [ 12— T A(=)Co() [ 16 [
A 12 1 A1) Co(z) [ L6
Ci(z) 13 Do(z) 13 - —>D0(:3)C’1(:)—> 19 +—
Dy(z) 13— — Di(z")Ci(z) =~ 19 —
Do | 15 - D)0 [ 1o [

" Ca(z) » 13 = By(z) S Iy —
_’BI(ZB)Cz(Z)—> 16 >

(a) (b)

Figure 11: An example tree (analysis side).

Whereas in a dyadic tree, only one of the two branches on a given level divides further, this is not in
general the case with arbitrary trees. Further, in a general tree, two different levels may have different
number of branches. In the dyadic case, each level has precisely two branches.

In a general TSAB, filters that have the same input will be said to belong to the same level. Thus, in
fig. 11(a), the filter sets {Ao, A1}, {Do, D1, D2}, {Bo, B1}, and {Cy, C,Cs} each contribute a separate
level. We will call a level an output level, if its outputs do not branch out further. For example,
{Ag, A1}, {Dy, D1, D2}, {By, B1} are all at output levels. We will say a TSSB matches a TSAB if it is
topologically a mirror image of the TSAB. For example, the TSSB in fig. 12 matches that in fig. 11(a).
Of course the filters appearing in a matching TSSB may differ from their counterparts in the TSAB in
question.

Further we will designate the levels constituting {Py, P1}, {Qo,Q1}, {S0, 51,52}, {To,T1,T>} as
respectively the matching levels of {Ag, A1}, {Bg, B1}, {Co,C1,C2}, {Dg, D1, Ds}. We will call the tree
structured filter bank critically sampled if its equivalent in fig. 1 is also critically sampled.

Throughout, the following assumption applies:

Assumption 4.1 Fach level in the TSAB s a critically sampled uniform analysis bank with all filters



— 12 = Pi(2) — 13— So(z)

— 13 = Bz) — 13— Si(2) —F—
— 12— Qolz)
— 12 = Qulz) — T3 = 52(2)

Figure 12: Matching tree structured synthesis bank.

rational.

In a dyadic tree, each level is a 2-channel critically sampled uniform filter bank. Observe Assumption
4.1 guarantees that the TSAB is critically sampled.
Throughout this section the results presented are for TSABs. Proof of extensions to the TSSBs,

being trivially similar, are omitted. We now state and prove the main result of this section.

Theorem 4.1 A TSAB satisfying Assumption 4.1 is invertible iff each of its constituent levels is in-
vertible. Under this condition the TSAB has an inverse that s a matching TSSB, with each matching

level the inverse of its counterpart in the TSAB.

Proof: The if part is trivial. The only if part is proved by contradiction. If any of the levels is
not invertible, its polyphase matrix has linearly dependent rows. Hence by lemma 3.2 the extended

polyphase matrix of the TSAB also has linearly dependent rows, a contradiction. m

Thus if a TSAB is invertible, then not only is it conformally invertible, but in fact its left inverse is a
matching TSSB. This thus generalizes the comparable result in [11] derived for orthonormal trees.
The question remains: Suppose a conformally invertible, nonuniform analysis bank has a set of

decimation ratios that are compatible with a tree structure. Is it then necessarily decomposable into
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—J 16 Py(2%)So(2)
— 16 Py(2%)S0(2)
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— 16 Q1(2)S2(2)
(a)

Figure 13: Synthesis bank which cannot be decomposed into a tree structure.

a TSAB? The answer in general is no. To see this, consider the example, [11], of a T'SSB shown in
fig. 12. This can be redrawn using noble identities as in fig. 13(a). Suppose this synthesis side is
conformally invertible. Now consider the synthesis bank in fig. 13(b), with Lo(z) = (Py(2%)So(2) +
Qo(2%)S2(2))/V2, L1(2) = (P1(23)So(2) — Qo(2%)S2(2))/v/2. Clearly fig. 13(a) and fig. 13(b) have the
same MISO (multiple input single output) relationship. However, it is not possible to decompose fig.
13(b) into a tree structure. The reason is as follows. For this synthesis bank to be represented as a
tree, Lo(z) (and L;(z)) must be expressible in the form Pj(23)Sy(z) or Qy(23)S2(2) (see fig. 12 and fig.
13(a)). Neither is possible unless Sp(z) = S2(z). However, since the synthesis bank at each level of the
tree in fig. 12 is invertible, So(z) # S2(z). Hence this synthesis bank cannot be decomposed into a tree

structure. In the next section we show that for dyadic nonuniform analysis banks, this result does hold.

16 Po(2%)So(2)
16 Lo(2)
19 To(2°)S1(2)
19 T1(2°)S1(2)
T9 Tx(2°)S1(2)
16 Ly(z)
16 Q1(2%)Sa(2)
(b)

5 Dyadic filter banks and tree structures

The previous section showed that every invertible TSAB admits an inverse that is a matching TSSB.

We now turn to the special case of dyadic filter banks where a stronger result is possible.




Recall that a general dyadic tree structured filter bank is equivalent to a dyadic nonuniform filter
bank of the form in fig. 2. In this section we show that a dyadic nonuniform analysis bank (respectively,
synthesis bank) of the form in fig. 2 is conformally invertible iff it admits a tree structured decomposition.
In view of the results of the previous section this therefore also shows that every conformally invertible

dyadic analysis bank has a tree structured inverse.

G (2) | 2V s 2N P (2)
z(n) Go(2) | 2N+1 gN+1 Fy(z) —l y(n)

s} vz e Ql(Z)j
T R e S | = I L N I R T B N P e T

Figure 14: Tree decomposition of a dyadic filter bank obeying (5.15) and (5.16).

Consider now two channels of a dyadic nonuniform filter bank depicted in fig. 14, with G;(z), Fi(z)
all rational. Then from the noble identities it is evident that this nonuniform filter bank is decomposable
as in fig. 14(b) if and only if

Gi(z) = 5(2)8i(z*") (5.15)
and

Fi(z) = Q(2)Qi(=*"). (5.16)

This in turn requires that ]
Gi(z) _ S1(z*")
G2(Z) SQ(Z2N)

(5.17)

and

fiz) _ i) (518
Fy(z)  Qu(z*") '
Put differently, the decomposability of fig. 14(a) into fig. 14(b) is equivalent to the requirement that

forall 0 < k <2V —1,

Gi(z) _GiBz) o Fi(z) _ Fi(B2)

Go(z)  Go(Brz) By(z)  F(brz) (5.19)

—j2rnk
where B = e 2V .

Lemma 5.1 describes a setting in which this is necessary.
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Figure 15: An equivalent structure to fig. 14(a).

Lemma 5.1 Consider the structure in fig. 14(a) with G;(z), Fi(z) all non-zero. Suppose for some

G(z), F(z), fig. 14(a) is equivalent to fig. 15. Then (5.19) holds.

—j27p

Proof: Define W/ =e77 ,

Gu(z) = Gi(z) G1(zWivii) ... Gl(zW;g:_g)
Ga(z) GQ(ZW:)QN+1) Gg(zW;g:_g)
G0 — G1(zWanar) Gi(zW) ... GizWii ™)
- Go(zWona1) Ga(zWiy)) ... GolzW2Ai ™)
N+1_¢ T
Xe(Z)Z[X(z) X(2Wiepi) ... X(zij+1—2)]
N+1 T
Xo(z) = [ X (zWoni1) X(ZW23N+1_) X(2W22N+1_1)]
and
Q(Z):[G(z) G(zWyv) G(W2) ... G(ZW;S’—I)]
Note

W22fl\€]+1 - W:;CN
Thus, in fig. 14(a)
Y(2) = ooy | File) Fae) | 16e(2)Xel2) + Gol2) Xol2)).

Because of (5.25), in fig. 15
1
Y(z)= Q—NF(z)ge(z)Xe(z).

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

Thus for all combinations of X.(z), X,(z), the right hand sides of (5.26) and (5.27) are equal. Conse-

quently for all z,
Fi(z) Fy(z) | Golz) =0.
Thus, from (5.21), for all 0 < k < oN _ 1,

Fi(z)  Ga(zWJ)

Fo(z)  Gi(zWZT])’

19
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_i27k

3 __a2m _
Note that W] = ¢~ 2¥ ¢ 7341 = Wk Wynsi. Thus, forall 0 < k <2V —1,

2 2
Fi(2) Ga(azB)
— = ——— ' (5.30)
Fg(z) Gl(azﬁk) )
where a = Woyn+1. Consequently, choosing 2 = az, forall 1 <k <2V —1
G1(z Ga(2f
1(2)  Ga(26k) (5.31)

Go(2)  G1(20B%)
that is, the first equality in (5.19) holds.
Further, since for every 0 < k,1 < 2V — 1, there exists 0 < m < oN — 1, for which Br0; = Bm, the

second equality in (5.19) also holds. n

The next lemma shows that, in fact, in the decomposition in fig. 14(b), the &(n) to §(n) relation

can be chosen to be biorthogonal.

Lemma 5.2 Consider the structure in fig. 14(b) with all filters non-zero rationals. Suppose the system
from x(n) to y(n) is non-zero and is equivalent to the structure in fig. 15. Then one can select the
filters in such a way that

(i) the &(n) to y(n) relation is the identity system, and

T T
(1) the z(n) to | z1(n) z2(n)

, and [ z1(n) z2(n) to y(n) relationship is preserved.

Proof: We first argue that the uniform filter bank relating #(n) to g(n) in fig. 14(b) is alias free.

From [15], this is guaranteed if

Q1(2)S1(—2) + Q2(2)S2(—2) =0

Q1(z) [Si(=2)  Q22)]
550 2) Sz(—z)+Q1(z) =0. (5.32)

From (5.17), (5.18)

S2(2)  Gy(zav) | @22)  py(zav)
Thus (5.32) is equivalent to _
Gl(z#e—{—f) . Fy(z7) _ .
Go(22Ve 2V)  Fy(22V)

This clearly holds from (5.30) with k£ = 0, and from the fact that o = ¢TIV,
Thus, the #(n) to g(n) relationship is LTT with transfer function T'(z). Clearly T'(z) # 0, as otherwise
the z(n) to y(n) relation will be zero. Then replacing Q;(z) by T~'(2)Qi(z) and Q(z) by T(ZQN)Q(Z)

yields the result. m
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Figure 16: An (N + 2)-channel filter bank.

IA{N l 2[\7 T 2[\7 FN
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Figure 17: Modified dyadic filter bank.

The next Lemma (see [2] for details) relates the 2/¥-fold extended polyphase matrices of a filter bank

to its 2V F1-fold extended polyphase matrices.

Lemma 5.3 Consider the last N channels of the dyadic filter bank wn fig. 16 with all filters rational.
Let E(z) (respectively, R(z)) be the 2N -fold extended type-I (respectively, type-II) polyphase matrices of
the AB (respectively, SB), and E(z) (respectively, R(z)) their extended 2N+ -fold counterparts. Suppose

E(z) = Ey(2%) + 27 B (2%) and R(z) = Ro(2%) + 2Ry (2?).

Then

E(z) = Boz)  Ba(z) and R(z) = Rol#) zRa(2) . (5.33)
271 E1(2)  Eo(z) | Ri(z) Ro(z) |

We need one more preparatory lemma.
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Lemma 5.4 Consider the dyadic filter bank wn fig. 16, with all filters rational and N > 1. Suppose this
filter bank is biorthogonal. Then there exist rational Hy (z) and FN(Z) such that the filter bank in fig.

17 s biorthogonal.

Proof: Call E (z) (respectively, R(z))7 the 2V+1fold extended type-I (respectively, type-II) polyphase
matrix of the analysis bank (respectively, synthesis bank) in fig. 16. Further call E(z) (respectively,
R(z)), the 2V*1_fold extended type-I (respectively, type-II) polyphase matrix of the analysis bank
(respectively, synthesis bank) obtained by removing the upper two channels in fig. 16, and E(z) (re-
spectively, R(z)) the 2V¥-fold extended polyphase matrix of this N-channel AB (respectively, SB). Then

R(z)E(z)=1 & E(2)R(z)=1.
Since for some F(z), R(z),
, E . .
Bla=| o | - A= | R R |
one has
E(2)R(z) = 1.
With E;(z), Ri(z) as in lemma 5.3, by lemma 5.3
Ey(z)  Eq(2) Ro(z) zRi(2)
271E1 (Z) Eo(z) Ry (Z) Ro(Z)
Thus
Eo(z)Ro(2) + E1(2)Ri(z) = 1,
zEg(z)R1(z) + E1(2)Ro(z) = 0.
Thus
B()R(z) = |Bo(z%) +27'B1(z%)] [Ro(z) + 2R ()]
= Eo(2*)Ro(2?) + E1(2*)R1(2%) + 27 E1(2*) Ro(2°) + 2Eo(2°) R1(2%)
= I
Note E(z) is (2V — 1) x 2V and R(z) is 2V x (2 — 1). Clearly there exist rational 2" -vectors p1(z),
p2(z) such that

i (2)

(=) [m(z) R(2) ] ~ 1.
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Hence the result. n

The result goes beyond the results of Section 4 in the following respect. It shows that if an N + 1-
channel dyadic analysis bank is conformally invertible, then one can augment its channels indexed from
0 to N — 1 in a manner depicted in fig. 17 in a way that the resulting N-channel dyadic analysis bank
is not only conformally invertible, but that its inverse’s channels indexed from 0 to NV —1 coincide with
the corresponding channels of the inverse of the N + 1-channel dyadic analysis bank.

We can now prove the main result of this section.

Theorem 5.1 Consider the dyadic nonuniform filter bank in fig. 2 with M > 2 and all filters rational.
Suppose the filter bank is biorthogonal. Then the analysis bank and the synthesis bank are equivalent to
a TSAB and a TSSB respectively.

Proof: Suppose the result holds for some N = M — 1 > 2. Consider the filter bank in fig. 16 and
assume it is biorthogonal. Then from Lemma 5.4, there exists a filter bank of the form in fig. 17 that is
biorthogonal and has all filters rational. Consequently channels N +1 and N + 2 in fig. 16 are together
equivalent to the top channel in fig. 17. Thus from Lemmas 5.2 and 5.3 the top two channels in fig. 16
are equivalent to a structure as in fig. 14(b) with the 2-channel uniform filter bank relating @(n) to y(n),
biorthogonal. Thus the filter bank in fig. 17 with S(z) = Hy(z) and Q(z) = Fy(z) is biorthogonal.

Then a simple inductive argument proves the result. n
Taken together with the results of the previous section, we have the following result for dyadic

analysis banks.

Theorem 5.2 A critically sampled dyadic analysis bank with rational filters, is conformally invertible,

iff both the following conditions hold:
(i) The analysis bank can be decomposed into a dyadic TSAB.

(ii) The two channel filter banks appearing at every level of this dyadic tree are themselves invertible.

Further, the inverse is also decomposable into a dyadic TSSB. The levels of the TSSB can be chosen

so that they form biorthogonal pairs with their matching levels in the TSAB.

Note also that this provides a simple test for conformal invertibility: check if the analysis bank or
synthesis bank is decomposable into a dyadic tree structure with invertibility of each level. Decompos-
ability of course requires testing if for all 7 > 1, the ratios H;(z)/H;+1(z) are rational functions in 22,

and is simple to verify.
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Indeed turn to the example at the end of Section 2, of a dyadic analysis bank that though left
invertible, was not conformally so. In that case Hi(z) = 142724223 +2"%and Ha(z) = 1427142274,

Clearly, one cannot express Hy(z)/Hs(z) as G(2%), with G(z) rational. Hence this analysis bank is not

decomposable into a tree structure.

On the other hand consider the example below.

|—~Bl(_z) 12—+ T2 —>D1(Z)—l
a2 e e 12 FIpo2)

AO()_’ .1,2 > TQ (()(Z) >

Figure 18: A two level tree structured filter bank.

A

T

Example 5.1 Consider the set of analysis filters Hyo(z) = (26 — 2% — 22 — 2+ 1+ 271) /(212 = 228 +
1),Hi(z) = (25421 —2—271) /(21628 =224 —1), Ho(2) = (—28+ 20423422 —2—273) /(21628 —22% —1).

The corresponding polyphase analysis matriz s then

[ _ z+1 z(z+1) z z
z4—-2z—22-1 2%—-2z—22-1 z4—2z—22-1 z4—-2z—22-1
_ z 22 _ 1 z
195, .2 35, .2 39, .2 o S PO S
E(Z) — z 2~1 z2—1 z 2~1 1 z 2: z2—1 24 -2z : 1
—1422—z 2322241 —14z2— T 2322241
1 1 1 1
B — 14222 23922241 —1422—2 2322241 i

[ 1 z z 22-
z—1 z(z—1 1 =z
E1(2) = ( )
-z z+1 z z
| —2(z—1) (z+1)(z=1) 1 1 |

The ratio Ho(2)/H1(2) = (=25 4+ 2* + 1)/(2* + 2?) = B1(2?)/A1(2?) is an even rational function in
z. Compare the analysis sides of fig. 6 and fig. 18. The set of filters on the analysis side of the tree

structure in fig. 18 are then given by Ag(z) = (28 — 2% — 22 — 2+ 1+ 271) /(212 — 228 + 1), By(2) =
(22—273) /(216 =28 =221~ 1), A1 (2) = 22+ 2, and B1(z) = —23+2°+1. From the expression of E~1(2),

we obtain the synthesis filters Fo(z) = 204+ 24 + 23 + 2, F1(2) = 21N + 29420 = 25 420 — 23 4+ 22 Iy (2) =
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Hi(z) — L KN [=  —{ F(z) [~ L K Gi(z) o LN |~

Hy(z) L KN — ‘ Go(z) — | N —
L Hy(2) L KN |~ L v Gu(z)~{ | N |—
(a) (b)

Figure 19: Illustration of Lemma 6.1.

—2 42T — 26 4 25 — 2 + 1. The ratio Fy(2)/Fi(z) = (=20 + 1)/(25 + 2% + 22) = D1(2?)/C1(2?).
Comparing the synthesis sides of fig. 6 and fig. 18, the set of synthesis filters of the tree structure in fig.
18 are then given by Cy(z) = 26 + 22+ 23+ 2, Do(2) = 2° — 2+ 1,C1(2) = 23 + 22 + 2, Dy (2) = 23 — 1.

Thus we have an equivalent tree structured filter bank to the given dyadic biorthogonal filter bank.
6 Stable and FIR decompositions

We now turn to the following questions. Suppose an analysis or synthesis bank comprises stable
(respectively, FIR) filters, and is decomposable to a tree structure. Then can the tree structure be
chosen so as to comprise exclusively of stable (respectively, FIR) filters? Lemma 6.1 below provides an
affirmative answer.

Lemma 6.1 Suppose the structure in figure 19(a) is equivalent to that in figure 19(b,),T with all filter

transfer functions rational. F(z) is scalar, H(z) = | Hi(z), Hs(z), ..., Hpy(z) and G(z) =

T
Gi(z), Ga(z), ..., Gu(2) are M x 1. Suppose the filters in figure 19(a) are stable (respectively,

FIR). Then all filters in figure 19(b) can also be selected to be stable (respectively, FIR).

Proof: We will prove the result for the stable case. The FIR case is similar. The equivalence ensures
that
H(z) = F(2)G(z).
Suppose F'(z) is unstable. Write it as
_ F(z)
=223

with 3 an unstable pole. Thus as H(z) is stable, z — 3 must be a common factor of each G;(2%). Since
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these are rational in 2,

G(ZK) — GA(ZK)(ZK _ ﬂK)-

Consequently, with 3(z) the polynomial (25 — %) /(z — 3),
H(z) = [F(2)p()| [G(z9)].

Thus by replacing F(z) by F(z)5(z) and G(z), in fig. 19, one retains the equivalence while removing
the unstable pole 8 from F'(z), and without adding new poles to G(z). Continuing this procedure it
follows that F'(z) can be chosen to be stable.

Now suppose G(z) is unstable, and at least one G;(z) has the unstable pole 1. Then one can write,
in a possibly nonminimal way:

") = i

K )

where some elements of G(z%) may have the zero 7. It follows that as F(z) has no unstable poles, for

some rational stable F(z),
F(z) = F(2) (" = ).

Thus, one can write

H(z) = [F(2)] [G(z")].
Thus by replacing F(z) by F(z) and G(z), in fig. 19, one retains the equivalence while removing the
unstable pole 7 from G(z), and without adding new poles to F'(z). Continuing this procedure it follows
that G(z) can be chosen to be stable.

A similar result applying to synthesis structures can also be used. Using this Lemma one can prove
the following strenghtened version of Theorems 4.1 and 5.1. Note first that an analysis or synthesis
bank has a stable inverse if its extended polyphase matrix is minimum phase, that is, its determinant is
minimum phase. Similarly an FIR analysis or synthesis bank is FIR invertible if its extended polyphase

matrix is unimodular, that is, has constant determinant.

Theorem 6.1 Suppose a stable (respectively, FIR) nonuniform analysis bank/synthesis bank with ra-
tional filters is decomposable into a tree structure satisfying Assumption 4.1. Then this TSAB/TSSB
can be chosen to have all elements stable (respectively, FIR). Further suppose the extended polyphase
representation of the TSAB/TSSB is invertible and minimum phase (respectively, unimodular). Then
the inverse is a stable (respectively, FIR) TSSB/TSAB.
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Proof: The first part of the theorem follows from repeated application of Lemma 6.1. To prove
the second part invoke Theorem 4.1. Suppose the analysis bank is invertible and minimum phase
(respectively, unimodular). Then it has a stable (respectively, FIR) inverse, which by Theorem 4.1 can
be decomposed into a tree structure prescribed by the theorem. By the first part of this theorem, that
tree structure must be stable (respectively, FIR). The result with respect to stably (respectively, FIR)

invertible TSSB follows similarly. n

7 Conclusions

Two principal results have been presented relating biorthogonal nonuniform filter banks with tree
structures: (i) That every TSAB is invertible iff its inverse can be decomposed into a matching TSSB,
with each matching level of the resulting tree structured filter bank, being itself a biorthogonal uniform
filter bank. (ii) That a dyadic analysis bank is conformally invertible iff it can be decomposed into a
TSAB with the 2-channel uniform filter banks on each level, themselves invertible. The second result
thus also provides an easy test for conformal invertibility of dyadic filter banks. All these decompositions
preserve stability. If a stable (respectively, FIR) analysis bank or synthesis bank is decomposable into a
TSAB or synthesis bank, then this equivalent tree structure can be chosen to have all constituent filters
stable (respectively, FIR).

These results were derived under the assumption that all filters have rational transfer functions.
Barring the results of Section 6, this assumption is in fact unnecessary, and has been invoked primarily
to use the Noble identitities. Thus, the notion of extended polyphase representation and the results of
Sections 3 and 4 can be derived independently of the rationality assumption. The two key devices used
in Section 5, are (5.19) and Lemma 5.1. The latter does not assume rationality, and the former can be

proved independently of rationality by using techniques similar to the proof of Lemma 5.1.
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Abstract

We present a novel dual channel identification approach for mobile wireless communication systems.
Unlike traditional channel estimation methods that rely on training symbols, we propose a bent-pipe feedback
mechanism which requires the mobile station (MS) to send portions of its received signal back to the Base
Station (BS) for wireless channel identification. Using a filter-bank decomposition concept, we introduce an
effective algorithm that can identify both the forward and the reverse channels based only on this feedback
information. This new method permits transfer of computational burden from the MS to the resource rich

BS and leads to significant savings in bandwidth consuming training signals.

I. INTRODUCTION

We propose a new approach to the estimation and compensation of forward link channels in
mobile wireless communication systems that centers on a novel bent pipe feedback mechanism.
In principle, this feedback mechanism enables Base Stations (BS) to simultaneously estimate
both the Forward Link Channel (FLC) from the BS to a Mobile (MS) and the Reverse Link
Channel (RLC) from the MS to the BS, without any training signals or resorting to blind
estimation techniques. While practical realities temper these theoretical expectations, as we
will demonstrate in this paper, our techniques bring with them certain significant advantages.

Our paper is motivated by the strong surge in mobile wireless communication systems.
The rapidly expanding arena of wireless services including mobile computing and broad-
band multimedia would require much higher wireless capacity and higher data rates than
is currently needed, over the often unreliable wireless medium. Indeed, unlike their wire-
line counterparts, wireless communication links are highly susceptible to channel variations,

particularly in mobile environments. Three specific advantages motivate our approach.

(A) Adaptive Coding

The high variability of wireless links poses a serious challenge to assuring quality of service
(QoS) to various traffic flows under harsh and dynamically distortive channel conditions.
To address QoS needs, future wireless communication systems must respond to potentially
rapid channel changes in an effective and timely manner. Currently, FLC estimation and
equalization responsibilities are assigned almost entirely to the MS [1], [2], [3]. At the same
time, to improve adaptivity to channel conditions, several researchers have proposed a num-
ber of schemes that require at least a partial awareness of the FLC at the BS. Thus, Paulra;]

et. al., [6] demonstrate substantially improved performance through the use of adaptive
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space time coding that assumes that the BS has partial knowledge of the FLC. Goeckel et.
al. [10] propose other forms of adaptive coding again relying on similar information. Bit
loading in OFDM systems similarly assumes a channel aware BS, [8], as indeed does the
power minimization scheme of [9]. Similarly precoding techniques [11] can be significantly
improved should the BS have partial knowledge of the FLC. Our bent pipe feedback tech-
nique naturally apprises the BS of the prevailing FLC conditions that are needed by these

schemes.

(B) Shared FLC compensation

As noted earlier, the tasks of FLC compensation and estimation are often assigned to the MS.
It is recognized that most future wireless cellular services will be characterized by an FLC
that supports higher data rates than does the RLC. For a given channel, higher data rate
induces longer delay spread and more severe ISI. In other words the discrete time baseband
model is of a higher order, and its equalization and compensation more onerous. At the
same time it is the BS that houses greater computational reserves, even though it is assigned
the less burdensome task of estimating and compensating the RLC. It is thus desirable to
shift at least a part of the FLLC compensation and estimation burden to the more resource
rich BS. The feedback mechanism we propose permits a better utilization of this resource
disparity, by transferring much of the FLC estimation and compensation tasks to network
nodes with greater resources.

More specifically. our method in principle permits the BS to estimate and pre-compensate
the wireless channel. In practice, because of roundtrip delays and channel variations that
occur within the resolution of such delays, the BS will only partially compensate the dynamic
channel, and the MS must take part in combatting the residual ISI. Nonetheless, this partially
compensated channel will induce reduced levels of ISI, whose removal would consequently

impose far less computational burden on the MS.

(C) Reduced Training

Channel estimation at the MS is typically assisted by the frequent transmission of training
data. Asthe FLC supports higher data rates, and is consequently described by a higher order
discrete time model, it requires longer training sequences, transmitted more frequently. This

is obviously at the expense of the all too precious forward link bandwidth. In GSM for



example roughly one sixth of the transmission time is devoted to training signals.

As noted in (B), due to roundtrip delays our scheme permits the the BS to only partially
compensate the FLC, and the MS must combat the residual ISI with the assistance of some
training. Nonetheless, this partially compensated channel suffers from reduced levels of ISI.
As we demonstrate through simulations in a later section, the number of training symbols
needed for the estimation and compensation of the partially compensated FLC is significantly
lower, with consequent savings in the bandwidth allocated to FLC training. This advantage
is buttressed by the fact that no training is needed on the RLC, and that instead the time

slot normally used for RLC training can be used for the feedback data. m

It should be noted that 2G CDMA systems and emerging 3G systems do employ some
simple feedback. Such feedback, however, is often limited to an estimated power loss param-
eter that enables the BS to compensate multipath distortion via power-control. Although
power-control or higher SNR can improve MS performance, particularly against flat fading
channels, channel distortion as a result of multipath fading cannot be efficiently compensated
by mere increase of transmission power. Other proposals for channel information feedback
are in [4]-[6], which involve feeding back channel parameter estimates to the BS at appropri-
ate instants of time. These proposals continue the practice of assigning the sole responsibility
of channel estimation to the resource challenged MS, and do not reduce the training burden
on the FLC.

Unlike the conventional feedback of channel estimates in [4], [5], our new approach only
requires that the MS feed back to the BS a portion of the received signal, over the time slot
conventionally reserved for RLC training, in epochs where either it normally transmits or in
epochs where it detects a performance degradation. Clearly, this permits the BS to estimate
the Roundtrip Channel (RTC).

However, the key novelty of our approach lies in the following discovery: By feeding back
only a portion, rather than the entire receiwved signal, one empowers the BS to identify both
the FLC and the RLC from the roundtrip feedback signal alone. This novel channel feedback
does not require high speed reverse links and can naturally accommodate asymmetric data
link structures. Furthermore, no additional training signals are necessary for estimating the

RLC at the BS. As will be explained further, this scheme requires no greater overhead than



those associated with [4]-[6], while at the same time having the fundamental advantage of

shifting substantial processing burden from the MS to BS, and reduced levels of training

data.
______BS Tramsceiver Wireless propagation 1 MS Transceiver
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Fig. 1. A wireless communication system with signal feed back.

Our paper is structured as follows. First, the basic principle of roundtrip feedback is pre-
sented in Section II. Its implementation issues are addressed and practical caveats analyzed.
Conditions under which RLC and FLC can be obtained from the RTC are in Section III.
An algorithm to estimate the roundtrip dynamics is formulated in Section IV. Section V

provides the unravelling algorithm. Simulations are in Section VI.

II. BENTPIPE FEEDBACK

The feedback scheme we use is depicted in Fig. 1. Specifically in this figure the FLC and
RLC respectively, operate at the rates 1/T7 and 1/T5, with Ty < Ty and Ty /Ty = L/M
for integers L and M that need not be coprime. The sampled data at the FLC output is
converted to the RLC rate by the decimator/interpolator combination depicted in the figure.
This is interlaced in the stead of normal RLC training data, with the data that the MS needs

to transmit through the RLC in its normal course of operation, and fed back to the MS.

wi(n) ws(n)

; u(n)
x(n v(n) y(n
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U

Fig. 2. The equivalent digital expression of the system (noise and interference considered)

Fig. 1 can be transformed into Fig. 2, where x(n) is the digital data sequence transmitted



by BS at time nT) at the rate 1/T}, y(n) is the data sequence received by BS at time nT)
after sampling at the rate 1/75, and h(n) and g(n) are the FIR impulse response of the
FLC and RLC respectively. Further, wi(n) and wy(n) are the noise sequences at the FLC
and RLC outputs, and u(n) models the interference caused by the normal RLC data due to
imperfect synchronization. Throughout we make the following standing assumption.

Assumption 1: The signals x(n), u(n), wi(n), wy(n) are zero mean, white and mutually
uncorrelated.

It is clear that given that the BS is aware of the data it has transmitted, under assumption
1 it can estimate the RTC. Using ideas from [12], we show that under mild assumptions
on the FLC and RLC, the BS can in fact directly unravel the FLC and RLC from the
RTC, without any training in either FLC or RLC. This ability to separate RLC and FLC
from RTC estimate can be seen as a consequence of the rate changing mechanism that
separates the two channels. Rate changers are time varying systems, and consequently, even
when wy(n) = wy(n) = u(n) = 0, the LTI operators h(n) and g(n) cannot be arbitrarily
interchanged.

We now pose and answer two questions surrounding the practicality of this approach. In
doing so at appropriate places we discuss the data and computational overheads associated

with this scheme relative to those of the feedback schemes mentioned in [4]-[6].

(i) What about roundtrip delay? Over reasonable distances the roundtrip delay is in
tens of microseconds. Thus, for example, over a roundtrip distance of 5 km, this delay is
about 16.67 us. Over such time spans, the environment as seen by the mobile unit undergoes
little change. This is underscored by the fact that in GSM each data frame has a duration
of 557 ps, and training occurs only once per data frame. Thus the channel variation within
the resolution of this delay occurs mainly because of Doppler effect. Still, even with Doppler
effect on high speed mobiles, the channel characteristics are unlikely to change drastically
within such a short time interval. As a case in point, a vehicle traveling at 100km /hr suffers
a maximum Doppler shift of 50 Hz at cellular band. The channel variation thus endured will
not be enough to prevent the transmitter from substantially compensating the FLC. Thus
the residual ISI that must be equalized at the receiver will be significantly milder leading to

the need for much shorter training sequences on the FLC. Given that no training is needed



on the RLC, and that feedback data occupies the RLC training slot used in conventional
communication, this implies substantial savings in the bandwidth devoted to the overall
training. Simulations presented later support this contention. Since the BS has greater
computational reserves, this would also effect a beneficial transfer of computational burden
to such a resource rich BS.

We should also note that the feedback schemes suggested in [4]-[6] would suffer the same
latency effects manifested by the roundtrip delay. Thus while the addition of the other ad-
vantages of our scheme are conspicuously absent in the approaches of [4]-[6] the effectiveness

of adaptive coding noted in the introduction should be comparable in both instances.

(7)) What about battery life? Overly frequent feedback transmissions may deplete power
resources at the receiver. In epochs where the receiver also transmits, the training data
currently sent can be substituted by the feedback data, as RLC training is no longer needed.
During silent uplink episodes, feedback can be restricted to epochs where the receiver detects
a high level of packet loss due to obsolete channel estimates, in much the same way as
existing proposals for channel estimate feedback require. Thus, the associated overhead is
again comparable to that in [4]-[6].

Taking a more long range view, whereas battery technology continuously improves, with
ever lengthening battery life, bandwidth resources will remain scarce. Given the bandwidth
savings reduced training brings about, one can expect bent pipe feedback to gain an increas-

ing advantage in this trade-off. m

ITI. CONDITIONS FOR ESTIMATING RLC/FLC FroM RTC

Borrowing ideas from [12] we show that it is possible in principle to unravel the FLC and
RLC dynamics from the RTC. We consider the case without noise and user interference at
first. The case with noise and interference will be treated later.

Consider the polyphase representation of the FLC and RLC transfer functions H(z) and

G(z) [13], given below.

M—1
H(z) = Hi(zM)z (1)
=0
I—1 '
G(z) = Y Gi(zh)=010, (2)
1=0

=~



In the sequel H;(z) and G;(z) will be called the polyphase components of H(z) and G(z),

respectively. Then with
ri(n) =x(nM —i) and y;(n) = y(nL + L — 1 — 1), (3)

we can redraw Fig. 2 as Fig. 3.

Thus, in principle the knowledge of x(i) and y(i) estimates the rank one matrix transfer

function
Go(z)
GI(Z) ‘ "
F(z) = : Ho(z) Hi(z) -+ Hya(2) |- (4)
| Gial)
T Lo Yo
M " Hy " Gy > L
21 —1
Ty W o
M H, Gy L
271 1
Tap—1 Yr— -1

) l—’ lﬂ/’f H -1 L Gr— TL 4&—’1/

Fig. 3. The polyphase representation of the system.

Now we will need one of the following two assumptions (both need not be satisfied).

Assumption 2: The greatest common divisor (ged) of the set of polynomials H;(2) is a
pure delay 2= (d integer). Further their maximum order is known.

Assumption 3: The ged of set of the set of polynomials G;(z) is a pure delay 2~ (d integer).
Further their maximum order is known.

Assumption 2 for example is quite common in fractionally spaced blind equalization, [15],
[16]. Further pure delay common factors in H;(z) and G;(z) result from delays in H(z) and
G(z), respectively, though the converse need not be true. In particular only delays of M
(respectively L) or larger result in the H;(z) (respectively G;(z)) having a pure delay as a

common factor. Then we have the following Theorem.
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Theorem 1: Suppose one or both of the two assumptions 2 or 3 hold. Then the matrix in
(4) gives H(z) and G(z) to within a common nonzero scaling factor and a delay as long as
H(z)G(z) # 0.

Proof:  Suppose assumption 2 holds. Observe, that one has available Gy(z)H;(z),
i €{0,---,M — 1}. Then the ged of Go(2)H;(2), i € {0,---, M — 1} is az"9Gy(2) for some
scalar o and integer d. Thus by dividing by this ged one obtains the H;(z) to within a scalar
and delay, and hence also the G;(z). The relation to assumption 3 can be similarly deduced.

Should however, the H;(z) and G;(z) have respective common factors 1—az~" and 1—527"
a # [3, then these can be exchanged between the G;(2) and H;(2) in (4) without changing
the input output relationship exemplified by (4). Consequently the G;(z) and H;(z) cannot
be separately extracted. This of course does not show how the H(z), G(z) can be determined
to within a scaling factor. The sequel provides such algorithms. Note, [12] does not have

these algorithms.

IV. ESTIMATING THE ROUNDTRIP DYNAMICS

In this section, we describe how the roundtrip dynamics can be estimated at the BS using
the feedback information. To this end, in Section IV-A we provide a z-domain description
of the relation between x(n) and y(n). Section IV-B explains how this description leads to

an estimation algorithm.

A. An input output relationship

Consider now Fig. 2 with u(k) the interference caused by the normal RLC data due to
imprecise synchronization. Adopt the standard notation of representing the z-transform of
signals represented by small letters such as a(n), by capital letters, e.g. A(z).

Define,
wae(n) L wy(nL + L —k—=1),0< k< L—1and up(n) € u(nL —k),0<k < L—1.

Then, [13]

L-1 -

Y(z) = Z p~(—1-k) Yi(2¥) and X(z E _ka

k=0 k=0



Likewise,

L-1 L—1
Wo(z) = TR, (28 and U(z) = > TR UL(21).
k=0 k=0
Thus we can rewrite
-1 L—1 L—1
Z Zf(Lflfk:) Yk(ZL) — Z Zf(Lflflc) Gk(ZL) V(ZL) + Z Z*(L*J*/i‘) ng(zL)
k=0 k=0 k=0
L—11—1 '
U DD SERLE I NEULAED
k=0 j=0
Equating coefficients on both sides of (5) one obtains:
Y[)(Z) GO(Z) L’TQ(Z) IVZU(Z)
= veren| o |+ -
YL71(3) GLA(Z) L’TLA(Z) "/’["72(L71‘)(/5)
where
Go(z)  Gi(z) Gr1(2)
~ Gl(f) Gg(?) _]G(](z.)
G(z) = ‘
Gro1(z) 2 'Go(2) 2 G oa(2)
Observe,
M-1 ;
Vi(z) = > Xj(2)Hj(z) + Wig(2)
7=0
where
wio(n) = wi(Mn).
Thus one has
Yo(2) Xo(2) Up(2) Wao(2)
: = F(2) : + CA?(:) : + :
YLA(Z) XMfl(Z) L’TLA(Z) "/’["72(L71‘)(/5)

where F(z) is given by (4).
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B. Estimation of RTC

Roundtrip dynamics estimation involves the estimation of F(z) from (10). The key thing
to note about the estimation of F(z) is that under Assumption 1, x(k) is uncorrelated with

wio(n), vi(n) and wo;(n). Thus one can express (10) as

= F(z) : +I'(2) (11)
Yr1(2) Xara(2)
where (n) is uncorrelated with z(n).
Suppose the order of H(z) is Iy and the order of G(z) is lg. In (1), Hi(z) =X, hi(n)z"",

where
hiltn)=h(Mn+1i) 0<i<M-10<(Mn+i)<ly (12)
Similarly, in (2), G;(2) = X, ¢:(n)z", where
gin)=¢g(n+L—-1-4) 0<i<L-1,0<(In+L-1-1)<lg (13)

By padding zeros, let the length of the sequence of coefficients of H;(z) be I, + 1 and that
of G;(z) be I, + 1, where [, and [, are the maximum orders of polynomial set H;(z) and
polynomial set G;(z) respectiveley. They are related to Iy and [ as follows:
bh+1=[(y+1)/M]
ly+1=[(a+1)/L]

where [x] stands for the smallest integer that is greater than or equal to x.

Let {; = [, + 1, and define

Ly
Fij(z) = Gi(2)Hj(2) = 3 fij(k)="" (14)
k=0

For some integer N to be specified in a later section, the Toeplitz filtering matrix of F;(z)

i1s defined as

fii(0) - filly) 0



In(F;) isan N X (Iy + N) matrix.

Denote
Xi(k) = [vi(k), 2k =, = N+1D]"0<i< M —1 (16)
X(k) =[] (k). X0 (o) (17)
Vilk) = li(k), - pi(k = N+ 1)]" (18)

By aligning M matrices Ty(Fj;), we get the block Toeplitz matrix
FiN) = [Tn(Fio), -+, In(Fin—1))] (19)
Hence, equation (10) can be expressed as
Vilk) = FAN)X(k) + (k) 0<i<L, (20)

where n(k) is uncorrelated with X'(k). The inverse of Ryy = E(XXT) exists because of

assumption 1. Then we have
FiN) = Ry,xRyy (21)

where Ry.y = E(Y;X7T) and E(-) denotes the expectation operation. Observe, the estimation
of F;(N) for each ¢ in {0,1,--- L — 1} provides F(z) accomplishing the estimation of the

roundtrip dynamics.

V. UNRAVELING FLC AND RLC FROM THE ESTIMATED RTC

We now demonstrate how the estimate of F;(N) obtained in the previous section can be
used to separate the FLC and RLC dynamics. For simplicity sections V-A and V-B provide
unraveling algorithms under assumptions 3 and 2 respectively, with the added assumption
that the cognizant polyphase components do not even share delays. Recall that this does
not necessarily imply the absence of delays in the pertinent channels but rather that delays
are smaller than M or L depending on whether the channel in question is the FL.C or RLC.
Methods of accomodating common delay factors among the polyphase components are in

section V-C.
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A. Algorithm when the G;(z) are coprime and do not share a delay

Similar to the definition of 7y (F};) in equation (15), we can define Ty (H;) and Ty (G;)
as the Toeplitz filtering matrix associated with H;(z) and G;(z) respectively. Ty (H;) has a
dimension N X (I, + N) and 7y (G;)’s dimension is N X (I, + N). Define the LN x (N +1,)

block Toeplitz matrix,

I Tn(Gp-) |

We note first the following well known fact, [16]:

Fact 1: If the G;(z) have no common factors, not even delays, then for a sufficiently large
N specified in [16], G has full column rank. Further, the left null space of G provides G;(z)
to within a scaling constant.

In the sequel choose N to be the smallest integer for which G has full column rank. Now

define the (I, + N) x M(l;, + N) matrix
H=|T,4n(Hy) Tion(Hy) - Tyn(Hy—1) |- (23)
Note that the following relation holds
In(Fij) = Tn(Hj) T, 1 5(Gi) = Tn(Gi) Ty v (Hj) (24)
Consequently, one obtains:
F=GH (25)
Define
F=[Fo (N - Froa(N)T)F (26)

and recall that section IV provides F.

It is evident that H is full row rank. Therefore, the column vectors of F spans the same
subspace defined by the column vectors of G, referred to in the sequel as the signal subspace.
More importantly the left null space of F is identical to the left null space of G. Fact 1 then
sets up the direct estimation of G(z) from the left null space of the estimate of F provided

in the previous section.
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Allowing for estimation errors because of finite data records, call F the estimate of F

provided by the algorithm in the previous section. Denote the error matrix as N, i.e.
F=GH+N.

Hence we have the following result after performing a singular value decomposition (SVD)
of F:
Yo 0 wH

F=GH+N = (V. V}) (27)

where ()7 stands for the Hermitian transpose, the column vectors in V, span the signal
subspace, and the column vectors in V), span the left null space of F and hence of G. The
dimension of V and V,, are LN x (I, + N) and LN x (LN —1, — N).

If there is no estimation error, the i-th column p; of V), satisfies
"
P, G =0 (28)

where p; = [p;(0),---,p;(LN — 1)]7. In practice, when estimation errors exist, (28) can be

solved in the least square sense, i.e. by minimizing the following quadratic form

LN—l,—N—1
ag)= >, Ipf'GP, (29)
i=0
where
g = [go(()), et 790(19)7 e 7gL71(O)7 e 7gL71<Zg)]- (30)

In order to solve for g in equation (29), we follow the method in [16]. Similar to the
definition of Ty (F};), we define the filtering matrix 7; 4 (P;;) associated with P;;(z), 0 < <
LN -1,— N —-1,0<75 <L -1, where

N-1

Pi(z) =3 pi(iN +k)z"" (31)
k=0

The dimension of 7;, 11(P;;) is (I, + 1) x (I; + N). Define
Pi = [Zg—l—] (-PiO)Tv to '/,];‘q-l—] (‘Pi(rf—]))T]T (32)

Then equation (29) can be transformed into

LN—l;~N-1
q(g) = gPg", where P = > PP (33)

=1
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The solution of g is the smallest eigenvalue of matrix P. Note that g consists of all the
coefficients of G(z). Thus the RLC is identified up to a multiplicative constant. From the

estimated G(z), we can construct G as in (22). From
H=G'F (34)

where (-)T indicates pseudoinverse, we can also identify the FLC up to a multiplicative

constant.

B. Algorithm when the H;(z) are coprime and do not share a delay

The foregoing algorithm deals with the case when assumption 3 is satisfied together with
the stronger condition that the polyphase components G;(z) do not share any delays. In this
case, we identify G(z) first, and then identify H(z) from the estimated G(z). Now suppose
that assumption 2 is satisfied together with the condition that the polyphase components
H;(z) do not share any delays.

Define for some integer N

Ty(Hy)
N T+ (H,
I Ti(Hy ) |
Under assumption 2 and the lack of common delay factors among the H;(z) there exists an

N for which H has full column rank. Choose

and

QY

=\ 7, 5(Go) Ty 5(Gr) oo Ty 5(Gra)
Then (24) leads to:
F=HG,

and an algorithm very similar to that in Section V-A accomplishes the desired unraveling.
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C. Treating common delay factors

We now consider the situation where the pertinent polyphase components may have com-
mon delay factors. We will explain the underlying ideas with Assumption 3 in force. Similar
ideas apply to the case where Assumption 2 holds.

Suppose that G;(z) = z7'G;(2) where the G;(z) have no common factors, i.e. 2~ is the
ged of the Gi(2). Suppose Hi(2) = 27" H;(z). Then because of the upper triangular Toeplitz
nature of 7y(G;) and Ty(H;), and because of (24), Ty(F;;) has [ + n; columns that are zero
vectors. These zero columns also appear in F. The matrix F obtained by removing these
zero columns can he expressed as

F=GH

where G in particular is

Q)
[l

(36)

and as the G;(z) have no common factors has full rank and has identical null space as F.
Consequently the algorithm in section V-A working with F rather than F suffices to estimate

G(z) and H(z) to within a scalar and delay ambiguity.

VI. SIMULATIONS

We present two simulation examples, the first to illustrate the basic performance of the
algorithm, and the second to illustrate the reduction of training levels needed on the FLC
when the channel parameters change with time. Before presenting these simulations we make
precise our notions of SNR and SIR (caused by the interference effect of poorly synchronized
RLC data.)

Denote noise, interference and signal at the output of RLC as w(n), u,(n) and z(n)

respectively. We can see y(n) = z(n) + w(n) + u,(n). SNR and SIR are defined as

— E(2%(n)) -

SNR = Fioai) (37)
_ E(n)

St = E(u2(n)) (38)



If the variance of x(n),w;(n),wy(n) and u(n) are 02,62 , 02 and o2 respectively, and if the

wy ? (135}

signals are wide sense stationary (WSS), by a derivation given in the appendix, we have

M— 1 2
SNR =z 0 X 5 (39)
EA 09 ( )"‘LU?
M-=1 '_
o B TG S S ) (40)

LO' Zk 0J° ( )
where f;;(k) is defined in (14) and [ is the order of RLC.

Simulation example I: The FL.C and RLC are generated from two delayed raised-cosine
pulse C(t,a), where « is the roll-off factor. C(t) is limited in 87 for FLC and in 67 for
RLC, where T is the symbol interval.

FLC =0.1C(t,0.25) 4+ 0.8C(t — T/2,0.25) (41)
RLC = 0.5C(t,0.10) — 0.7C(t — T/3,0.10) (42)

Their corresponding discrete time channel coefficients are

FLC =10.0129,-0.0326,0.0693, —0.1485,0.6019, 0.5019, —0.1485, 0.0693, —0.0326]  (43)
RLC =1[0.0521, —0.0786, 0.1423, —0.0783, —0.2882,0.1128, —0.0677]  (44)

We use down sampling factor M = 3 and upsampling factor L = 2. Hence [, = 3 and [, = 4.
Noise signal wy(n) and wy(n) are zero mean and have the same variance. The input signal is
i.i.d BPSK. We focus on estimating and compensating the FLC in the interference free case.

To quantify the quality of channel estimation, we define the normalized root-mean-square

error(NRMSE) as

Mt

!
NRMSE = LS ey = |1 (45)
7R\ &

where M, is the number of Monte Carlo runs; h is the real channel and IA'),(Z-) is the estimate
in the ¢-th run. Fig. 5 shows NRMSE versus total SNR, where total SNR is defined in (39).

After FLC and RLC are estimated, a pre-equalizer is built for the FLC and a post-equalizer
for the RLC. The length of the zero-forcing equalizer is three times the corresponding real

channel length. The equalizer SNR is SNR at the output of the equalized system. That is,
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for FLC SNR is that at the output of the channel, but for RLC SNR is that at the output
of the post-equalizer. BER versus equalizer SNR is displayed in Fig.6.

To evaluate the effect of iterference due to uplink data, Fig.7 shows the BER versus SIR
at fixed SNR.

Fig. 4. The channel impulse responses of FLC and RLC.

10°

—k— FLC
— RLC

1072 I I I
-5 o 5 10 15 20 25 30 35

Total SNR

Fig. 5. NRMSE versus total SNR without interference. 100 Monte Carlo runs. 500 symbols for each run.

Simulation example II: Reduced training for a time varying channel:

We use COST-207 Typical Urban(TU) [7] model with 100 echo paths, BPSK data and
maximum Doppler frequency 55Hz. We assume the channels to be quasistatic, i.e. time-
invariant in one frame and time-variant from frame to frame. Each frame lasts 400usecond
(cf 557 psecond for GSM) and the roundtrip delay is 16.67usecond. The receive filters for

FLC and RLC are raised cosine functions with roll-off factors 0.2 and 0.1 respectively. The
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1077 L L L L
-5 o 5 10 15 20

Equalizer SNR

Fig. 6. BER versus equalizer SNR without interference. Channels are estimated at 20dB with 500 symbols
in each run. 100 Monte Carlo runs.

o

10

10~

107

BER

10°

10~

10°

10~

Fig. 7. BER versus SIR with 20dB total SNR and 25dB equalizer SNR.. 500 symbols in each run. 100 Monte

Carlo runs.

FLC sustains a data rate of 1 Mbps, and the RLC supports 0.667 Mbps.
Two situations are compared:

(a) Training aided equalization of FLC at the MS and of the RLC at the BS, with no
feedback.

(b) No training on the RLC, but instead sending feedback data of the same length as the
RLC training data in (a). A precompensator, obtained using the scheme of this paper is used
on the FLC and is augmented by a post-equalizer estimated at the receiver using reduced
training.

Both methods use the same input signal power and noise power. Figure 8 shows n,/n,
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versus input SNR for both methods to achieve the same BER. Here n, is the length of the FLC
training sequence used in (a) and ny, the length of training used for partially compensated
channel estimation in (b), so that the same FLC BER is obtained in both cases.

As is evident from the simulation that at 18db SNR oyr algorithm requires only 32% train-
ing length on the FLC than the conventional training based FLC compensation. Translated
to a GSM setting instead of devoting 1/6th of transmission time for training only 1/19th is
needed to achieve the same performance in this time varying setting.

Given that the feedback data on the RLC replaces and has the same length as the training
data in (a), this represents substantial savings in bandwidth.

0.75 T T T T T T T

0.6

0.35[

0.3
2 4 6 8 10 12 14 16 18

Input SNR(dB)

Fig. 8. ny/n; versus SNR at the same BER.

VII. CONCLUSION

We have proposed a new feedback scheme that permits FLC and RLC channel estimation
from the BS, in principle without the use of training signals or blind estimation methods. In
practice it leads to significant savings in the bandwidth consumed by training signals, and
the transfer of some of the computational burden currently shouldered by the MS, to the

more resource rich BS. The feasibility of these ideas have been demonstrated through both
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theory and simulations. The possibility of unraveling FLC and RLC from the information

of RTC is a core novelty of the paper.

APPENDIX

Similar to equation (3), we define
ziln)=znL+L—-1-19),0<:<L-1 (46)

So E(z%(n)) = S E(z3(n))/L. And we know z(n) = ZM Sl fii(k)ai(n — k)

M-1 I M-1 lf ;
E(z Z qu (n—Fk) Z qu) (q)a,(n —q)] (47)
7=0 k=0 p=0 ¢=0

From assumption 1, we know E(x;(n—k)x,(n—q)) = §(p—j)6(k—q)o?,where é is Kronecker’s

delta. Then,

B = a2 3 5 £2(H) (48)
j=0 k=0
L-1M—1

E(z*(n)) = o2 f,};(k)/L (49)
i=0 j=0 k=0

From equation(10) and (8), we can see wyo(n) will pass through G;(z) forall 0 <i < L —1.
Note that the variance of wi(n) is equal to wip(n), and wi(n) and we(n) are uncorrelated
and zero mean. Similar to the derivation of E(z%(n)), we have

L—1 14

E(w?(n)) = o5, > (k)/L + a3, (50)

1=0 k=0

And we know Y17 Z;’;’:O g2 (k) = Zk 0 ¢2(k). From (49) and (50), we get the expression for
SNR in (39). It’s easily seen that the interference component at the output of RLC is the
signal by passing u(n) through channel G(z). So we have
lg
E(u%(n)) = 02 ¢*(4) (51)
i=0
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ABSTRACT

This paper considers the design of biorthogonal DMT mul-
ticarrier transceiver systems supporting multiple services.
The supported user services may have differing quality of
service (QoS) requirements, quantified in this paper by bit
rate and symbol error rate specifications. Our goal is to
minimize the transmitted power given the QoS specifica-
tions for the different users, subject to the knowledge of
colored interference at the receiver input of the DMT sys-
tem. In particular we find an optimum bit loading scheme
that distributes the bit rate transmitted across the various
subchannels belonging to the different users, and subject to
this bit allocation, determine an optimum transceiver. This
work differs from our prior work [6] where orthonormal
transceivers were considered.

1. Introduction

Future broadband communication systems will be expected
to deliver multiple services, such as voice, data, video, with
multiple-stream support. Because delivery of these streams
will be under differing requirements such as information
rate and error performance, allocation of critical resources
like power would have a significant impact on the overall
performance of the communication system. Discrete Mul-
titone (DMT) transmission involves a channel coding tech-
nique to achieve reliable, high data rate communications in
such systems. It is a current standard in various wireline
applications like ADSL, VDSL, [10], and in the form of Or-
thogonal frequency division multiplexing (OFDM) has been
proposed for fixed wireless standards like IEEE 802.11a,
[12]. This paper considers transceiver optimization for such
multicarrier transmission systems operating in a multiuser
environment.

More specifically, we assume that a single DMT sys-
tem supports r users, each having its own QoS specification
quantified by its bit rate and symbol error rate (SER). The
k-th user requires a bit rate of ¢;, and an SER of no more
than n;. An equal number of subchannels are assigned to

Supported by ARO grant DAAD19-00-1-0534 and NSF grants ECS-
9970105 and CCR-9973133.

each user. As proposed in several recent papers, [7], [6],
[9], we consider general DMT transceivers which are more
general than the traditional DFT based systems in that the
input and output transforms are general block transforms.
We consider biorthogonal systems employing zero padding
redundancy with the redundancy removal at the receiver be-
ing a general linear operation. Our goal is to select the input
and output block transforms Gg, S (see fig. 1), the lin-
ear operation reflecting redundancy removal, the number of
bits/symbol assigned to each subchannel, and the subchan-
nels assigned to each user to achieve the QoS specifications,
under a zero intersymbol interference (I1SI) condition with
the minimum possible transmitted power. We assume that
the channel and equalizer are known and so is the interfer-
ence autocorrelation.

We thus generalize our earlier result reported in [6], where
the same optimization problem was considered with an or-
thonormal transceiver under the assumption that each user
is assigned the same number of subchannels. We shall see in
the following sections how the extension to [6], considered
here nontrivially modifies the optimization problem.

Figure 1 depicts the DMT communications system un-
der consideration. An incoming data stream is converted
into M parallel data streams of lower rate. An M -point
block transformation Gq, of these streams of data is fol-
lowed by a parallel-to-serial conversion, prior to transmis-
sion through the communication channel. An equalizer is
employed to shorten the dispersive effects of the transmis-
sion channel. The equalized channel C(z) is assumed to be
FIR of length k. For an FIR equalized channel of length x,
extra redundancy of length « in the form of zero padding
is added at the channel input to infuse resistance to chan-
nel induced ISI. At the channel output, one performs in
succession the operations of redundancy removal, serial-to-
parallel conversion, and the application of an inverse block
transform, Sg.

Past treatment of optimum resource allocation, [1], [2],
[3], has been restricted mostly to bit loading and power allo-
cation algorithms. Some authors have studied the optimum
transceiver design in the single user case, [7], [9]. While
[7] was concerned with optimizing the transmitted power,
[9] focussed on the maximization of the mutual informa-



tion between the transmitted and received signals. In [5] the
authors consider the problem considered here for the sin-
gle user case of » = 1, and with orthonormality condition
enforced. In [7] the single user case is considered with or-
thogonality removed. Reference [7] shows that in the single
user case biorthogonality leads to no improvement in the
transmitted power. Likewise a major conclusion of this pa-
per is to show that even in the multiuser environment with
potentially asymmetric subchannel allocations, optimal per-
formance is acheived by orthonormal transformations.
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Fig. 1. DMT communication system.

2. Formulation

In this Section we give some preliminaries. Specifically, in
Section 2.1, we recount the details of the generalized DMT
system, along the lines of [7]. Section 2.2 provides a precise
description of the optimization problem.

2.1. Preliminaries

Barring [7], most papers assume that Gy is unitary, i.e.
GGy =1 (2.1)

In the biorthogonal case considered here we relax (2.1) and
simply assume that Gy and Sy can be arbitrary nonsingular
M x M matrices. Denote the blocks of M input and output
symbols respectively by x(n) = [zo(n),- -,z _1(n)]7,
and x(n) = [#o(n),- -+, & 1(n)]T. With v(n), the noise
and interference effect at the output of the equalizer, denote
v(n) = [v(Nn),v(Nn+1),---,0(Nn+ N —1)]T, as the
N-fold blocked version of v(n), with N = M + k. Then
one can show, [5] that with Cr, an N x M constant ma-
trix characterized by the x order FIR equalized channel, and
S1, an M x N matrix, representing the linear redundancy
removal operation, the blocked input-output relation of the
system is given by

ﬁ(n) = S()SlCLGox(n) + S()Slv(n). (2.2)

We impose the perfect reconstruction (PR) condition,
i.e., in the absence of noise/interference, x(n) = x(n) for
all n. In other words,

S08:CLGo = I, (2.3)

and the DMT system has no ISI. To obtain a more useful
characterization of PR, consider the singular value decom-
position of Cr,

A

CLZUC|: 0

] VH = UgA VE (2.4)

where U, and V,, are respectively N x N and M x M unitary
matrices and A isa M x M real, positive definite diagonal
matrix. Then, because of (2.3), given Gy, the class of all
SoS1 enforcing PR is completely characterized by

So =Gyt (2.5)

and
Si=VAT'[In A)UH, (2.6)

where A is any arbitrary M x x matrix. In the sequel it will
be useful to partition U, as U, = [Uy U], where Uy is
N xMandU; is N x k.

Note, as V., U. and A. are supplied by the channel,
the only quantities that need to be found to determine the
transceiver completely are G and A.

2.2. Problem formulation

As mentioned earlier the M subchannels are distributed among
the r users with each of the users being allocated L =
M /r subchannels. Thus consider disjoint subsets Z, C
{0,...,M—1}with |Z| = L > l,andZ,NZ; = 0,k # 3.
Subchannel assignment to the k-th user constitutes deter-
mining Z. We assume that the j-th subchannel of the k-th
user is assigned b; ; bits per symbol. To meet the bit rate
specification for the k-th user one requires that

1
N Z bjk =tk 2.7)

JELx

Let the input power in the j-th subchannel of the k-th user
be o2, . Assume that o7, is the noise power in this sub-
channel. Under high SNR most modulation schemes, [8],
require that to achieve a given SER the required SNR is pro-
portional to 2%.%. More precisely,

o2, = dp2%tal (2.8)
where the constant dj, depends on the desired SER, 7, for
the k-th user. For example, for QAM, dj, = 1[Q " (Z:)]2.



Under this framework, the transmitted power for the biorthog-
onal DMT system is given by

E Z Ugj,k[G(I){GO]JJ

Pg = (2.9)
k=1j€Is

= Z Z debj”“Uzj)k[Gé{Go]jj. (210)
k=1 j€Ly

Define R, denoting the known autocorrelation matrix of
the noise vector v(n), and
R. = SoR,S! and R, =S R,SE. (2.11)
Then (7 , are the diagonal elements of R., the autocorre-
lation matrlx of the receiver output noise vector e(n). Thus,
because of (2.5), (2.10) can be rewritten as

o 1S5 15i[S0 Ruw S5

=3 d2%+[S
k=1 jeI
(2.12)

Thus the optimization problem becomes: Given R,, L,
Nk, tg, Minimize (2.12) subject to (2.7) by selecting b; x
(bit loading), selection of Z;, (subchannel assignment), Sq
(transformation selection) and because of (2.6), A (redun-
dancy removal selection).

We show that there is a conceptual separation between
the three selections, i.e. the optimizing A is determined ex-
clusively by R,,, provided by the knowledge of the interfer-
ence and equalizer characteristics; Sy is determined en-
tirely by A and the channel characteristics; 7, are deter-
mined entirely by R., in turn provided by S; and Sy, and
the bit allocations are determined once the above quanti-
ties are found. Further as noted in the introduction, we will
show that without loss of generality, the optimizing So, Go
are unitary.

3. Optimum selections

In this section we consider the selection of the various vari-
ables.

3.1. Optimum Bit Loading

From the Arithmetic Mean-Geometric Mean (AM-GM) in-
equality that states that the Arithmetic Mean, exceeds the
Geometric mean, with equality if all samples are equal, we
have that for a given choice of Z; and Sg, under (2.7),

Pg > Pporr

de Ntk H [S5 7 S5 155150 RwSg 55

JEL

1/L

with equality iff for all £ and 4, j

209+ S5 S35 [So RwSg 155 = 2% [S5 ™ S5 M ii[So RuwS§ i

(3.13)
This is in turn equivalent to the optimum bit loading rule:
b N log, e: GG Golys
L
! L 2 (Hjel'k €.k [GHGO]JJ)I/L

(3.14)
Note that Pgopr is much more complicated than its spe-
cializations, r = 1, studied in [5]. Thus, under optimum bit
loading the remaining variables must be selected to mini-
mize Pgopr. Observe, that while the choice of these other
variables impacts the selection of b; », Propr itself is inde-
pendent of b; ;. This underscores the fact that the remaining
variables can be selected regardless of the precise values of
b, obtained through (3.14).

3.2. Selection of Sy, 7 and A

Assume for the moment that 4 and hence .S; has been se-
lected and that the resulting positive definite Hermitian R,,
has the SVD:

R, = UANUH (3.15)
with A = { Ao, -, Ap—1} real, diagonal and U unitary.

The goal is to select So and Z; to minimize Pgopr.
For convenience we first work with the minimization of

M—-1
J(So) = Y ailSoRwSs il S5 S5 i

=0

(3.16)

given positive a;. Note J(Sg) has the form of Pg.

It is noteworthy that in [5], the S = PU¥, with P
a permutation matrix miminimizes Pg_gppr. If Sy is re-
stricted to be unitary, then [11] shows that this choice of
Sp also minimizes (3.16). Consider, however, the example
where a; = 1, M = 2 and R, = diag {9,1}. Then ob-
serve that J(I) = 10 but with

=gl LIl

J(C) = 8. Thus in general Sy = UH does not minimize
(3.16). However, we will show in the sequel that it does
minimize Pgopr.

The following result shows that the search space of Sy
can be restricted to a particular form.

Lemma 3.1 For some unitary V, (3.16) is minimized by

So = VAT'/2UH (3.17)
and (3.16) becomes
M-1
=) ai VAVH (3.18)
i=0



Denote 8 = di2V®*/L and p; = [VAVH] .. Then
under optimum bit loading it suffices to restrict the search
of Sp to (3.17) and to seek to minimize under unitary V:

Pg —Zﬂk H N2/L

= JEZ,

(3.19)

with Z; defining the optimal arrangement of the sequence
of pg.

Before proceeding, we need a few results from the the-
ory of majorization, [4].

Definition 3.1 Consider two sequences z = {z;}?, and
Yy = {y’i}?zl with Ti > Titl and Yi 2 Yitl- Then we say
that y majorizes z, denoted as z < y, if

k k
Z T; < Z Yi
i=1 i=1

holds for 1 < k < n, with equality at £ = n. We say that
y weakly supermajorizes z, denoted z <"V v, if Zf:j z; >

Factl If H is an n x n Hermitian matrix with diagonal
elements h = {h;}? , and eigenvalues A = {\;}?,, then
h <A

Definition 3.2 Areal valued function ¢(z) = ¢(z1, ..., 2n)
defined on a set A C R™ is said to be Schur concave on A
if

z <yonA= ¢(z) > ¢(y).
¢ is strictly Schur concave on A if strict inequality ¢(z) >
#(y) holds when z is not a permutation of y. Further if
x <" ythen also ¢(z) > ¢(y).

We will now state a theorem that results in a test for

strict Schur concavity. We denote ¢ (z) = %‘l’T(:).

Lemma 3.2 Let ¢(z) be a scalar real valued function de-
fined and continuous on D = {(21,...,2p) : 21 > ... >
zn }, and twice differentiable on the mterlor of D. Then ¢( )
is Schur concave on D if ¢ (2) is increasing in k.

The following Lemma provides an important property
of Z; the optimum arrangement of the subchannels.

Lemma 3.3 Consider for L > 2 and o, 8, a;,b; > 0,
L-1 L—1
f=@]J a)* + B[] 0)**
k=0 1=0

with a; > a;41 and b; > b;1. Suppose for some 4, j

of _ of

a; > b; and6 8b

(3.20)

Then

L—-1
(,3 H bl.ai)2/L<f.

1=0,l#j

Further 8f/0a; < 0f/0a;1 and 8f/0b; < Of [Ob;t1.

L-1
H ak.bj)2/L +

k=0,k+i

Thus from Lemma 3.3, any optimum arrangement for (3.19)
requires that for all

oP; _ 0Py
Our — O

B> m =

Under this condition, P is Schur concave. Thus from Fact
1,as
{[VAVH] 3ET < {Xo,- -, A1),

the choice of V as a permutation matrix that enforces an op-
timum arrangement of subchannels, minimizes (3.19). Thus
to within a permutation matrix P, under optimum bit allo-
cation, one can choose as an optimizing So = PA~1/2UH,
Now note that for any diagonal nonsingular matrix §2,

J(So) = J(250),
and that for some diagonal matrix A,

So = PAY2U" = A2 Pyt
Thus as in [5], the minimizing So = PUH with P enforcing
the optimum arrangement. Under these conditions

[So ™S5 15[SoRwSs i

and indeed o2 L, are the eigenvalues of R,,

Thus, regardless of A the best Sy is a Karhunen Loeve
Transform of R,,, and the Uej,k equal the eigenvalues of R,,
From the comment on supermajorization made at the end
of Definition 3.2, it follows that the optimizing A must be
such that the set of resulting eigenvalues of R,, weakly su-
permajorize all possible sets of attainable eigenvalues. The
optimizing A can then be shown to be given by, [6],

-1

A=-U§'R, U, (UR,1h) (3.21)

4. Simulation results

In this section, we compare the transmitting power of the
DFT based DMT under no bit allocation and optimum bit
allocation with an optimum unitary transceiver. We assume
the equalized channel to be C'(2) = 1 + 0.5271, and a
noise source v(n) whose power spectral density is shown
in fig. 2. We assume the DMT system supports three user
services, where each user is allocated an equal number of
subchannels and with the same SER requirement and mod-
ulation scheme for each user. The plot in fig. 2 compares



the transmit power levels as the number of subchannels al-
lotted to the users is varied. The plot shows that there is
a 10 dB saving in transmit power with our design over the
DFT based DMT under optimum bit allocation, and a 14 dB
improvement over the conventional DMT with no optimum
bit allocation.
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Fig. 2. Comparison of transmit power levels.

5. Conclusions

In this paper, an optimum bit allocation strategy and design
of a general biorthogonal DMT multicarrier transceiver sys-
tem employing zero padding redundancy were presented,
for minimizing the transmit power when different users with
varied QoS requirements are supported and are assigned po-
tentially different number of subchannels. We showed that
no gains in transmit power can be obtained by consider-
ing biorthogonal transceivers over orthogonal transceivers.
These results also show that the optimum transceiver de-
pends only on the channel and interference conditions and
not on the QoS requirements. Indeed to within a permuta-
tion of subchannels, the optimum transceiver obtained here
is identical to that obtained in [5]. Equally should the chan-
nel/interference remain invariant after the initial connection
is established, then only bit loading and subchannel selec-
tion need be updated in response to changing traffic needs.
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ABSTRACT

This paper considers the design of biorthogonal DMT multicarrier
transceiver systems supporting multiple services. The supported
user services may have differing quality of service (QoS) require-
ments, quantified in this paper by bit rate and symbol error rate
specifications. To reflect their service priorities, different users on
the system can be potentially assigned different number of sub-
channels. Our goal is to minimize the transmitted power given the
QoS specifications for the different users, subject to the knowledge
of colored interference at the receiver input of the DMT system. In
particular we find an optimum bit loading scheme that distributes
the bit rate transmitted across the various subchannels belonging
to the different users, and subject to this bit allocation, determine
an optimum transceiver.

1. INTRODUCTION

Future broadband communication systems will be expected to de-
liver multiple services, such as voice, data, video, with multiple-
stream support. Because delivery of these streams will be under
differing requirements such as information rate and error perfor-
mance, allocation of critical resources like power would have a
significant impact on the overall capacity of the communication
system. Discrete multitone (DMT) is a channel coding technique
to achieve reliable, high data rate communications in such systems.
It is a current standard in various wireline applications like ADSL,
VDSL, [9], and in the form of Orthogonal frequency division mul-
tiplexing (OFDM) has been proposed for fixed wireless standards
like WLAN’s, [11]. This paper considers transceiver optimization
for such multicarrier transmission systems operating in a multiuser
environment.

More specifically, we assume that a single DMT system sup-
ports r users, each having its own QoS specification quantified by
its bit rate and symbol error rate (SER). The k-th user is assumed
to have been assigned nj subchannels, and requires a bit rate of
tx, and an SER of no more than n;. The number of subchannels
assigned to each user is fixed a priori according to some priori-
ties determined by the user service. As proposed in several recent
papers, [4], [6], [8], [10], we consider general DMT transceivers
which are more general than the traditional DFT based systems in
that the input and output transforms are general block transforms.
We consider biorthogonal systems employing zero padding redun-
dancy with the redundancy removal at the receiver being a general
linear operation. Our goal is to select transforms Go, So (see fig.
1), and the linear operation reflecting redundancy removal, and

Supported in part by US Army contract, DAAAD19-00-1-0534, and
NSF grants ECS-9970105 and CCR-9973133.

assign bits/symbol to each subchannel, to achieve the QoS spec-
ifications, under a zero intersymbol interference (ISI) condition
with the minimum possible transmitted power. We assume that the
channel and equalizer are known and so is the interference auto-
correlation.

We thus generalize our earlier result reported in [6], where the
same optimization problem was considered with an orthonormal
transceiver under the assumption that each user is assigned the
same number of subchannels. We shall see in the following sec-
tions how the extension to [6] considered here modifies the opti-
mization problem. Further, the asymmetric subchannel assignment
considered here is by contrast more realistic as service priorities
may cause certain users to receive greater number of subchannels
than others. For example, one may assign more subchannels to
video services than to audio services.

Figure 1 depicts the broad contours of a DMT communications
system. An incoming data stream is converted into M -parallel data
streams of lower rate. An M -point block transformation of these
streams of data is followed by a parallel-to-serial conversion, prior
to transmission through the communication channel. An equalizer
is employed to shorten the dispersive effects of the transmission
channel. The equalized channel C(z) is assumed to be FIR of
length . For an FIR equalized channel of length &, extra redun-
dancy of length « in the form of zero padding is added at the chan-
nel input to infuse resistance to channel induced ISI. At the channel
output, one performs in succession the operations of redundancy
removal, serial-to-parallel conversion, and the application of an in-
verse block transform.

Past treatment of optimum resource allocation, [1], [2], [3],
has been restricted mostly to bit loading and power allocation al-
gorithms. Some authors have studied the optimum transceiver de-
sign in the single user case, [4], [8], [10]. While [4] was concerned
with optimizing the transmitted power, [8] focussed on the max-
imization of the mutual information between the transmitted and
received signals. Essentially, [4] considers the same optimization
as presented here but under the assumption that only a single user
is supported by the system, i.e. » = 1. In comparison with [4],
the multiuser environment considered in this paper renders the op-
timization problem highly non-trivial as shall be seen.

In Section 2, we give a description of the DMT system and
the optimization problem under consideration. Section 3 presents
our results on optimum transceiver selection and the optimum bit
rate allocation strategy that needs to be adopted. Section 4 presents
some simulation results showing improvements in transmitted power
levels obtained with our optimum design. Section 5 concludes.
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Fig. 1. DMT communication system.

2. MULTIUSER DMT SYSTEM MODEL

2.1. Preliminaries

Define in fig. 1, Go and So as the nonsingular M x M trans-
mitter and receiver transform matrices respectively. We assume a
biorthogonal system, i.e.

So=Gy'. (2.1)

Thus, the input block transformation is a general nonsingular trans-
formation, and the output transformation is its inverse. Denote the
collection of M input and output symbols respectively by x(n) =
[zo(n), -+, &em-1(n)]7, and X(n) = [&o(n), -, Em—1(n)]".
With v(n), the noise and interference effect at the output of the
equalizer, denote v(n) = [v(Nn),v(Nn+1),---,o(Nn+ N —
1)]7, as the N-fold blocked version of v(n), with N = M + k.
Then the system in fig. 1 has the equivalent description of fig. 2.
Here C(z) is the N-fold blocked version of the channel-equalizer
combination C(z) = co + c1z”l + ...+ cez”". One can show
that

C(z)=[ CL Cr(2) | (2.2)

where Cy, isan N x M constant matrix, and Cr(z) isan N x &
matrix.

The addition of zero padding redundancy to an M -block vec-
tor is equivalent to premultiplication by

Izp = [ oﬁdM ] . 2.3)

Denote by S1, a suitable M x N matrix, representing the linear
redundancy removal operation. Then the input-output relation of
the system in fig. 2 is given by

x(n) = S051C(2)ZzpGox(n) + SoS1v(n) (2.4)
= S051CLGox(n) + SoS1v(n). (2.5)

We impose the perfect reconstruction (PR) condition, i.e., in
the absence of noise/interference, x(n) = x(n) for all n. In other
words,

S051CLGo = I, (2.6)

and the DMT system has no ISI. To obtain a more useful charac-
terization of PR, consider the singular value decomposition of Cr,
defined in (2.2):

Ac

CL:UC[ 0

] Vi = UoA V! 2.7

v(n) w(n)

*(n)+
x(n), | Go Izp C(z) S1 So L s(n)

Fig. 2. Block representation of DMT communications system.

where U, and V, are respectively N'x N and M x M unitary matri-
ces whose columns are the eigenvectors of Cy, Cr.” and C.” Cy..
A. isthe M x M real, positive definite diagonal matrix with diag-
onal elements that are the singular values of Cy,. Then, because of
(2.6), given Go, the class of all Sp.S1 enforcing PR is completely
characterized by (2.1) and
S1=VeA7'[ In A |UZ, (2.8)
where A is any arbitrary M x & matrix. In the sequel it will be
useful to partition U, as U, = [Up Ui, where Up is N x M and
U, isN X k.
Note, as Ve, U, and A. are supplied by the channel, the only
quantities that need to be found to determine the transceiver com-
pletely are G and A.

2.2. Problem formulation

As mentioned earlier the M subchannels are distributed among
the r users with the k-th user allocated nz subchannels. Thus con-
sider disjoint subsets Z;, C {0, ..., M — 1} with |Zj| = ns, and
I, NZ; = B,k # j. Subchannel assignment ro the k-th user
constitutes determining Z. We assume that the j-th subchannel of
the k-th user is assigned b; 5 bits per symbol. To meet the bit rate
specification for the k-th user one requires that

1
~ Z bjx = tk. (2.9)

JE€Ty

Let the input power in the j-th subchannel of the k-th user be
am - Assume that ae * is the noise power in this subchannel.
Under high SNR most “modulation schemes, [7], require that to
achieve a given SER the required SNR is proportional to 2% .
More precisely,

05, =di2" 0L, |, (2.10)

where the constant dy, depends on the desired SER for the k-th
user, mx. For example, for QAM, di = $[Q~'(%Z:)]>. Under
this framework, the transmitted power for the biorthogonal DMT
system is given by

Pgp

Z Z Uﬁj,k[Gé{GO]J‘j (2.11)

k=1 jeT;

3N d2tiral [GoGolys. (212)

k=1 jE€T

The minimization of the transmission power involves optimal
selection of b; i (bit loading), selection of Z,, (subchannel assign-
ment), Gy (transformation selection) and A (redundancy removal
selection).



3. OPTIMUM SELECTIONS

With R., R,, and R,, denoting the autocorrelation matrices of the
noise vectors e(n), w(n) and v(n) respectively,

Re = SoRwSE¥ and R, = S1R,SE. (3.13)

Note that a'e " in (2.12) are the diagonal elements of R.. Thus
(2.12) can be rewritten as

r

Pp(So) =Y > dk2%*[S5 ™ S5 j51S0 RuSo 1is- (3.14)

k=1 j€T

First consider the problem of determining optimum G, or
equivalently chossing Sp. Observe that the problem of choosing
So, under (2.1), minimizing (3.14) has the following form:

Problem 3.1 With M x M positive definite Hermitian R,, and
M x M nonsingular Sp, a; > 0, determine Sp to minimize

M-1
J(So) =) ailSoRwSg'JilS5 ™ S i (3.15)

=0

Now note that for any diagonal nonsingular matrix Q, J(So) =
J(2S0). This means that in finding a minimizing Sp to (3.15),
one can restrict the search to an So for which the diagonal ele-
ments of Sy S5 ! are 1/a;. The following Lemma considers the
equivalent constrained optimization of Problem 3.1.

Lemma 3.1 With M x M positive definite Hermitian matrix R,,,
M x M nonsingular So, consider the minimization of

M-1

> " [SoRwSs s (3.16)
=0
such that for all ¢ € {0, ..., M — 1} and some o;; > 0,
[So 780 i =1/ (3.17)

Then the minimizing So obeys for some real, positive definite, di-
agonal T,
(SoRwSy)(SoSaT) =T (3.18)

In fact one minimizing So for (3.15) obeys
(SoRw S )(SoSTy =1.
The following result shows a particular So minimizing (3.15).
Lemma 3.2 Let the SVD of positive definite Hermitian R,, be
R, = UN U (3.19)

with A real, diagonal and U unitary. Then for some unitary V,
(3.15) is minimized by

So=VA~?U (3.20)
and (3.15) becomes
M-1
J(So) = Y e [VAVT], (3.21)
=0

Before proceeding, we need a few results from the theory of
majorization, [5].

Definition 3.1 Consider two sequences z = {z;}7—; and y =
{yi}i=1 with z; > x;41 and y; > y;+1. Then we say that y
majorizes x, denoted as © < y, if . @; < 3¢, y; holds
for 1 < k < n, with equality at k = n. We say that y weakly
supermajorizes z, denoted z <" v, if E Lxp > E Vi 1<
i< n

Fact 1 If H isan n x n Hermitian matrix with diagonal elements
= {h;}}_; and eigenvalues A = {\;}i=;, then h < A.

Definition 3.2 A real valued function ¢(z) = ¢(z1,--. ., 2zn) de-
fined on a set A C R™ is said to be Schur concave on A if
z <yonA = ¢(x) > ¢(y). ¢ is strictly Schur concave on
A if strict inequality ¢(x) > ¢(y) holds when z is not a permuta-
tion of y. Further if z <" y then also ¢(z) > #(y).

We will now state a theorem that results in a test for strict
Schur concavity. We denote ¢ (z) = 5,
Lemma 3.3 Let ¢(z) be a scalar real valued function defined and
continuouson D = {(z1,...,2s) : 21 > ... > 2z, }, and twice
differentiable on the interior of D. Then ¢(z) is Schur concave on
D if ¢)(2) isincreasing in k.

We now return to the minimization of (3.14) with R,, having
the form (3.19). Because of Lemma 3.2, with So = VA~Y/2UH
for any choice of Z, and b;,x, and subject to V' being unitary

b k
P > génl dy, Z 274> VAV ] )
k=1 JETI,
. Nty /ng HT \2/ng
> V{/nll’n:I di2 H ([VAV ]jj)

k=1 FET
Denote 8 = dx2"*/™* and a; = [VAVHL;" Then
Pg > P} = min Z,Bk H a; (3.22)
T k=1 jex;

with Z;; defining the optimal arrangement of the sequence of ay.
The following Lemma characterizes such optimum arrangements.

Lemma 3.4 Consider for integers p,q > 2,

fz(aﬁ e ﬂHbz)m
k=0

with a, 8, @i, b; > 0. Suppose for some i, j

a; > bj and af al’)f . (3.23)
Then g = (a TTh_g sz ar-03)"? + (BIT1g, 1z, 1) /* < f.



Hence if there exist pairs a;, b; such that (3.23) holds, violating
the Schur concavity condition in Lemma 3.3, the value of f can be
reduced by interchanging a;, b;. From Lemma 3.4, an optimum

arrangement for (3.22) requires that for all ax, > ay, fo < ‘?;:1:3.
Under this condition, P is Schur concave. Thus from Fact 1,

as {[VAVH] 1L < {Xo,..., Am-1}, the choice V = I
minimizes (3.22). Thus the optimizing So = A~Y2UH, under
optimum bit allocation.

The optimum bit loading is obtained by using the fact that the
arithmetic-mean of the ny numbers {2°-*o? | [G¢ Goljj}ier,
in (2.12) is greater than their geometric mean, with equality iff

Ntk o-c?j,k[G(I)JGO]jj
bk =~ —log,

' Nk (H]‘ezk a-gj,k [G(I){GO]J'J')I/"’“

Thus under the above optimum bit allocation, and because of (3.13)
and Fact 1, the optimum Gy (from (2.1)) is a matrix of eigenvec-
tors of Ry, and [G§ Gol;;[Gy ' RwGy ™15 are the eigenvalues of
R,,. Thus even under the relaxed conditions on Gy, the best power
is achieved with orthogonal Go. Further, the optimizing A must be
such that the set of resulting eigenvalues of R,, weakly superma-
jorize all possible sets of attainable eigenvalues. The optimizing A
can then be shown to be given by, [6],

A= -U{R,U: (UF R, W) . (3.24)

4. SIMULATION RESULTS

In this section, we compare the transmitting power of the DFT
based DMT under no bit allocation and optimum bit allocation
with an optimum unitary transceiver. We assume the equalized
channel to be C(z) = 14 0.52~*, and a noise source v(n) whose
power spectral density is shown in fig. 3. We assume the DMT sys-
tem supports two user services. The (, j) on the x-axis of the plot
indicates that user 1 and 2 were respectively allocated 7, j num-
ber of channels. The plot shows that there is a 10 dB saving in
transmit power with our design over the DFT based DMT under
optimum bit allocation, and a 14 dB improvement over the con-
ventional DMT with no optimum bit allocation.

5. CONCLUSIONS

In this paper, an optimum bit allocation strategy and design of
a general biorthogonal DMT multicarrier transceiver system em-
ploying zero padding redundancy were presented, for minimizing
the transmit power when different users with varied QoS require-
ments are supported and are assigned potentially different number
of subchannels. We showed that no gains in transmit power can be
obtained by considering biorthogonal transceivers - the optimum
power is achieved through an orthogonal transceiver. Simulations
demonstrated potential improvements in performance over DFT
based DMT systems.
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BIORTHOGONAL DMT SYSTEMS
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Abstract

This paper considers the design of biorthogonal DMT multicarrier transceiver
systems supporting multiple services. The supported user services may have
differing quality of service (QoS) requirements, quantified in this paper by bit
rate and symbol error rate specifications. To reflect their service priorities,
different users on the system can be potentially assigned different number of
subchannels. Our goal is to minimize the transmitted power given the QoS
specifications for the different users, subject to the knowledge of colored in-
terference at the receiver input of the DMT system. In particular we find an
optimum bit loading scheme that distributes the bit rate transmitted across
the various subchannels belonging to the different users, and subject to this bit

allocation, determine an optimum transceiver.
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1 Introduction

Discrete multi-tone (DMT) modulation has proved to be an effective solution to the
problem of reliable and efficient data transmission over frequency selective communi-
cation channels. It is a curent standard in various wireline applications like ADSL,
VDSL, [2], and in the form of Orthogonal frequency division multiplexing (OFDM)
has been proposed for fixed wireless standards like IEEE 802.11a. With growing
and changing user needs, such communication systems are expected to deliver mul-
tiple services, such as voice, data and video, with multiple stream support. Because
delivery of these streams can be under different requirements on parameters like er-
ror performance, appropriate allocation of bandwidth and rates among the various
services becomes an important problem. The subject of this paper is to consider
transceiver optimization of general biorthogonal DMT systems operating in such a
multi-user environment.

We consider multiple flows supported on a general biorthogonal DMT system. Fig.
1 depicts the general DM'T communication system under consideration. This system is
more general as compared to the conventional DMT systems in that the transmitter
and receiver transforms are characterized by square matrices Gy and Sy, and the
redundancy removal at the receiver is a general linear transformation S;. In contrast,
conventional DMT systems employ an Inverse discrete Fourier transform (IDFT) and
DFT at the transmitter and receiver ends respectively, and the redundancy removal
is done by simply discarding certain symbols. Also, we consider zero padding as the
form of redundancy injection, as proposed in several recent papers, [7], [10], [13]. We
assume that this DMT system supports r service flows. Each flow may have its own
quality of service (QoS) requirement quantified in this paper by its bit rate and symbol
error rate (SER). Further, depending on their respective service priorities, each flow
is assumed to have been a prior:i allotted a certain number of subchannels. Thus for
instance, large bandwidth consuming video flows may receive more subchannels than
voice or data flows. We thus assume that the k-th flow is assigned n; subchannels,

requires a bit rate of ¢, and an SER of no more than 7,. We desire to minimize



the total transmitted power given these service-flow QoS specifications so that inter
symbol interference (ISI) free transmission occurs. The goal is to select the input and
output block transforms Gy and Sy, the linear redundancy matrix S;, the number
of bits/symbol assigned to each subchannel, and the subchannel assignment to each
service flow, in order to achieve the QoS specifications under a zero ISI condition with
minimum transmitted power. We assume knowledge of the equalized channel and the
second-order statistics of the noise at the receiver input.

We thus extend in this paper our results reported in [11], where the same optimiza-
tion was considered with an orthonormal transceiver under the assumption that each
flow is assigned the same number of subchannels. The unequal subchannel assignment
considered in this work is more realistic as service priorities may cause certain flows
to be assigned greater number of subchannels than others. We shall find that relaxing
the orthonormality condition, that is considering a biorthogonal system, and having
unequal subchannel assignment renders the underlying optimization methodology to
be non-trivially different from the considerations in [11].

Related treatments in literature are [3], [5], [6], [7], [8], [13], [16], [17]. A great
amount of work has been done in dealing with the problem of bit loading and power
allocation. References [3], [17] provide algorithms for the bit loading problem while
[5], [6] treat the power allocation problem for the multi-user and single user cases re-
spectively. The problem of minimizing the overall transmit power with multiple users
on an OFDM system was considered in [17], where the minimization was done by
adaptively assigning subcarriers to the various users along with adjusting the number
of bits and user power levels. The problem of transceiver optimization has received
attention only recently, with works [7], [8], [13] dealing with optimum designs when
a single user is supported on the DMT system. While [13] treated the problem of
maximization of mutual information between transmitted and received signals, works
[7] and [8] considered the problem of minimizing transmit power. In particular, [7]
considered the design of an optimum orthonormal DMT system that achieves mini-
mum transmit power under certain specified error probability and rate requirement.

This work was extended in [8] with the orthonormality constraint relaxed. In both



[7], [8] however it was assumed that a single user is supported on the DMT system.

The problem we consider in this paper differs from the treatments [7], [8], [17]
in the following ways. As in these works, we consider the problem of minimizing
transmit power. However in contrast to [17], which restricts its treatment to the
problem of resource allocation to conventional fixed DF'T based systems, we consider
the problem of optimum transceiver design of a general biorthogonal system as well.
Further the multiuser environment in our paper makes our treatment substantively
different from the single user case considered in [7], [8].

Our approach in this paper follows closely up on the formalisms developed in [8].
The bit loading solution of [8] can be considered as a water-pouring approach. Sup-
pose a set of subchannels experience a high level of attenuation. Then the optimum bit
loading scheme assigns fewer bits/symbol on these subchannels. Further to avoid too
many of such low performing subchannels, the subchannel selection process (optimum
transform selection) has to squeeze out those frequency bands with adverse conditions
as best as possible, specifically by forcing channel nulls or noise/interference peaks
to occupy as few subchannels as possible. These notions are developed for the mul-
tiuser case in our paper. A major conclusion of our work will be to show that, as
in the single user case of [8], even in the multiuser case with asymmetric subchan-
nel assignments, optimal performance is achieved through orthonormal transforms.
Specifically, we show that the optimum receiver transform is one which diagonalizes
the autocorrelation matrix of a certain noise vector at the receiver input, and the
optimum transmit transform is then the inverse of this optimum receiver transform
matrix.

The remainder of the paper is organized as follows. In Section 2, the general
biorthogonal DMT system is described, and the characterization of such a system
is developed along the lines of [8]. The precise optimization problem of minimizing
transmit power is formulated in Section 3. The optimal selections of the optimization
variables are described in Section 4. Section 5 provides some simulations and Section 6
concludes. The Appendix provides some useful results from the theory of majorization

employed to solve the optimization problem at hand.
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Figure 1: DMT communication system.

The following notation will be followed in the subsequent Sections. Discrete
time signals will be denoted by z(n),y(n) etc., with n being the time index. An
M x M diagonal square matrix with diagonal elements di,...,dy is written as
diag{dy,...,da}. [A]i; denotes the element in the i-th row, j-th coloumn of ma-
trix A. AT, A¥ respectively denote the transpose and transpose-conjugate of matrix
A. An M x M identity matrix will be denoted by I, with the subscript usually

dropped when the dimensions are clear from context.

2 General DMT system

In this Section, we describe the general biorthogonal DMT system supporting the var-
ious user flows. Consider the biorthogonal general DMT system shown in fig. 1. In a
biorthogonal DMT system, the transmit and receive matrices Gy and Sy are arbitrary
nonsingular M x M matrices, in contrast to orthonormal systems, [7], where Gy, Sy are
unitary, i.e. G¥Gy =1 = S Sy. In conventional DMT systems, Gy is an IDFT and
So is the DFT matrix. We assume that the data streams x¢(n), z1(n),...,zpm—1(n)
result from the r service flows. The M x M block transformation GG is applied to the
M-symbol data stream [zq(n),z1(n),...,zym_1(n)]*, and redundancy in the form of

padded zeros is introduced followed by parallel-to-serial conversion, prior to transmis-



sion. Thus consider the M symbol vector y(n) = [yo(n), y1(n),...,yx1(n)]*. Each
such block is converted in to an N-block, with N = M + k, by simply appending

zeros to it, obtaining the block

s(n) = [so(n),s1(n),...,sn-1(n)]"
= [yo(n), 1 (n),...,yar—1(n),0,...,0]".

Thus with

Iy
Izp = ; (2.1)

Oan

we have
s(n) = Zzpy(n).

Most practical transmission channels are characterized by dispersion that spreads over
a very large number of samples. A time domain equalizer is employed to limit these
dispersive effects and contain most of its energy in a few samples. Thus the combina-
tion of the transmission channel and equalizer, given by the equalized-channel C(z), is
assumed to be FIR of length k. For such a x length FIR equalized-channel, addition of
zero padding redundancy of length x infuses resistance to channel induced ISI. Denote
the multiple-input multiple-output system relating $(n) = [59(n), 51(n), ..., 5y_1(n)]¥
to s(n) by the N x N channel matrix C(z). This matrix is obtained from the coeffi-

cients of the equalized-channel C(z2) = ¢y + c127! + ... + c.2™", and is given by

o 27 leyoy z7leny_og -- 27l
¢y o z7leyoy - z7le
C(z) = (2.2)
| CN-1 CN-2 T €1 G ]

with ¢; = 0, for © > k. At the equalized-channel output, the redundancy is re-
moved using an M X N linear transform matrix S;. The M-block output samples
Zo(n),Z1(n),...,Zy_1(n) are then obtained by the application of the M x M trans-
formation Sj.

Denote the blocks of M input and output symbols by x(n) = [z¢(n),- - -, zar_1(n)]*
]T

and xX(n) = [Zo(n),- -+, Zm—1(n)]" respectively. With v(n), the noise and interference

6
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Figure 2: Block model of DMT system.
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effect at the output of the equalizer, denote v(n) = [v(Nn),v(Nn +1),---,v(Nn +
N — 1)]*, as the N-fold blocked version of v(n). We thus can redraw fig. 1 in the
equivalent form shown in fig. 2. It is easy to see that C(z)Zzp = Cr, an N x M

constant matrix. The output symbol vector x(n) is then given by
JA((TL) = SQSchG()X(TL) + S(]SlV(TL). (23)

We impose the perfect reconstruction (PR) condition, i.e., in the absence of

noise/interference, X(n) = x(n) for all n. In other words,
S051CLGy =1, (2.4)

and the DMT system has no ISI. To obtain a more useful characterization of PR,

consider the singular value decomposition of Cy,

C

0

CL=U, VE =UyAVE (2.5)

where U, and V, are respectively N x N and M x M unitary matrices, A.isa M x M
real, positive definite diagonal matrix, and U, is partitioned as U, = [Uy U], where
Upis N x M and U; is N x k. Then, because of (2.4), given Gy, the class of all 5;.5;

enforcing PR is completely characterized by
So =Gy (2.6)

and

(2.7)

c

Slzchgl[JM A]UH



where A is any arbitrary M x x matrix. Note that as V_, U. and A, are supplied by
the channel, the only quantities that need to be found to determine the transceiver

completely are Gy and A.

3 Problem formulation

As mentioned earlier the M subchannels are distributed among the r users with the
k-th user allocated n; subchannels. Assume that the n; indices of the subchannels
assigned to the k-th user are contained in the set Z;. Thus consider disjoint subsets
T, € {0,...,M — 1} with |Zy| = ny > 1, and Z, NZ; = 0,k # j. Subchannel
assignment to the k-th user then constitutes determining Z,. We assume that the
J-th subchannel of the k-th user is assigned b; . bits per symbol. To meet the bit rate
specification for the k-th user one requires that, for each 1 < k <r,

> big =t (3.8)

JETL
We assume that each service flow employs a different modulation scheme and has
to meet a certain SER. Most b-bit symbol constellation schemes require an output
signal-to-noise ratio (SNR) of d2%) b large, in order to achieve a given SER, say
7. Here d > 0 is determined by SER 7 and the employed modulation scheme and
constant ( > 0 depends on the particular modulation scheme used. For example, for
a b-bit square QAM, the SER is given by

n=4<1—%>62< %)m@( %ﬁ) when 2° > 1, (3.9)

where
o ]
Qa)= | —=e
Thus for large b, SNR= d2¢® with ¢ = 1, d = 3[Q"*(2)]* > 0. In the case of PAM,
¢=2,d=3[Q'(}P > 0.

Let the input power in the j-th subchannel of the k-th user be o7, and o7, be

—=/2.

the output noise variance in this subchannel. Since under perfect reconstruction, the



input power equals the output power in that subchannel, the relation between the

input signal power and the output noise power are related by

o2 = dp2%iro? (3.10)

Zj, €.k’

where the constant dj is determined by the modulation scheme used and the desired
SER, 7y, for the k-th user, and (; depends on the modulation scheme employed by
the k-th user. Here we have assumed that each of the subchannels of a particular
user has the same error rate. The error rates can however vary across different users.

The total transmitted power of the DMT system can be written as
N-1
PB = Z O'i,
=0

where o7, is the variance of the stream s;(n) in fig. 1. Rewritting in terms of G, and

2

Oz, > We have

Pg=3% > o, [GiGdj (3.11)

k=1j€T}
Denote R, to be the known autocorrelation matrix of the noise vector v(n), and
e(n), w(n) be the noise vectors at the output of Sy, S; respectively in fig. 2, with

respective autocorrelation matrices R,, ,,. We then have the relations
R, = SoR,S¥ and R, = S|R,SE. (3.12)

Note that Jgjk are the diagonal elements of R.. Thus, because of (2.6), (3.10) and
(3.12), expression (3.11) can be rewritten as
Pp =Y > de2%%+[Sy S 55(S0 RSy s (3.13)

k=1j€I},

Thus the precise optimization problem can be stated as follows.

Problem 3.1 Given positive ng, ng, tx, M X M positive definite Hermitian R,,, min-
imize (3.13) by selecting b, (bit loading) subject to (3.8), selecting Ij, (subchannel
assignment), M x M nonsingular Sy (transformation selection) and M x k matriz A

(redundancy removal selection, under (2.7)).



We shall adopt a multi-step strategy to solve the above optimization problem.
First, for a given choice of Sy, A and Z;, we shall minimize Pg by determining the
optimum b, under the rate constraint (3.8). This, as will be shown in Section 4.1, will
result in a lower bound for Pg, denoted Pgopr, under optimal selection of b;;. The
expression for Pgopr will itself be shown to be independent of b; ;, and the strategy will
then be minimize Pgopr through selection of the remaining optimization variables.
In the next step, assuming fixed A, which in turn fixes R,,, we shall minimize Pgopr
by the selection of Sy and Z;. It will be shown in Section 4.2 that regardless of the
choice of A, Pgpopr reduces to an expression that is determined by the eigenvalues of
R,,. These eigenvalues are determined exclusively by A and are independent of the
choice of Sy. The final step in our optimization solution process will hence be to find

an A that renders these eigenvalues to be most favorable.

4 Optimum selections

In this section we consider the optimum selection of the various variables. First

consider the problem of bit loading.

4.1 Optimum Bit Loading

As discussed in the earlier Section, we separate the optimization problem into dif-
ferent parts. First we ask: For a given choice of transceiver, i.e. given Sy, 51, and
a certain choice of 7, what is the optimum allocation of b;j; so that (3.13) is min-
imized under the constraint (3.8). This is a constrained optimization problem and
can be solved using the Lagrangian multiplier method. In fact, using the Arithmetic
Mean-Geometric Mean (AM-GM) inequality which states that the Arithmetic Mean
of a set of positive numbers is greater or equal to its Geometric Mean, with equality
if and only if all numbers are equal, we have that for a given choice of Zj, and Sy, St,

under (3.8),
l/nk

Pg > Pgopr =Y di [nx2%% T [S5 7S5 ;5150 RwSs )5 (4.14)

k=1 GET

10



with equality iff for all £ and i, j
26tk (S5 S5 5[0 RuSy' 15 = 2% [S5 ™ Sg il So Ruw S Ji- (4.15)

This is in turn equivalent to the optimum bit loading rule:

b= 25— Ligg, (S0 S il So RS ;5 _
R ¢ (Ijez, [So ™ S5 5510 RuwSgT5) /e

(4.16)

The remaining variables Sy, A, 7, must now be selected to minimize Pgopr. Note,
that while the choice of these other variables impacts the selection of by, Ppopr itself
is independent of bj . This underscores the fact that the remaining variables can be
selected regardless of the precise values of b, obtained through (4.16).

Note that Pgopr is much more complicated than its specializations, r = 1, studied

in [7] and, ny, = L for all k along with S Sy = I, studied in [11].

4.2 Selection of Sy, Z; and A

In this Section, we address the problem of designing the optimum transceiver and
optimal subchannel assignment. Specifically, we have to find the optimum Sy, Z;, and
A minimizing Pgopr in (4.14).

Assume for the moment that A and hence S; has been selected. Note that this
then fixes the autocorrelation matrix R, in (3.12). For convenience we first consider
the minimization of Pp in (3.13). Our goal will now be to determine the search
space for Sy, i.e. determine the class of Sy minimizing Pg(Sy), for a given matrix A.

Consider then the following optimization problem.

Problem 4.1 With M x M positive definite Hermitian R and M x M nonsingular
S, a; > 0, determine S to minimize
M
J(S) = ai(e] SRS"e;)(ef ST S e;) (4.17)
i=1
where e; is the M x 1 column vector with all elements zero except for the i-th element

which s unity.
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Observe that (3.13) has this form. Let the positive definite Hermitian R have the
SVD:
R=UNU" (4.18)

with A real, diagonal and U unitary. It is noteworthy that in all the papers [1], [7],
8], the choice S = PU¥, with P a permutation matrix minimizes Pgopr. If S is
restricted to be unitary, then [1] shows that this choice of S also minimizes (4.17).
Consider, however, the example where o; = 1, M = 2 and R,, = diag {9,1}. Then
observe that J(I) = 10 but with

1 ]11 1/v/3 0
B=_—
V201 21010 1

J(B) = 8 < J(I). Thus in general S = U¥ does not minimize (4.17). However, we
will show in the following results that it does minimize Pgopr.

The following Lemma shows that J is invariant under any diagonal scaling of S.
Lemma 4.1 With J(S) as above,
J(S) = J(Q25)
for any diagonal nonsingular €.

Proof: Proved by direct verification. n

This in particular means that one can restrict attention to S such that the diag-
onal elements of S"#S~1 are 1/;. Lemma 4.2 shows an important property of this

equivalent constrained optimization problem.

Lemma 4.2 With M x M positive definite Hermitian matriz R, M x M nonsingular

S, consider the minimization of
M
> el SRSe; (4.19)
i=1
such that for alli € {1,..., M} and some o; > 0,
el STHS e, = 1/ay. (4.20)

12



Then the minimizing S obeys for some real diagonal T,
(SRS™)(SSH) =T. (4.21)

Proof: Denote [S]y = sk, and let st and si”) be the real and imaginary parts of

sp; respectively. Note that

oS T oS .7
(R = €re;, —m — JEk€,
85,(55) : 63,&? :
oSH T osH .7
— & = eief, —y = —Jeey,
85,(9?) g 83,(6? g
-1 -1
o5 _ —S—lepel ST, 05 _ —jStepel S71,
(R) t (1) t
Osy, 0syy
S—H b ra-n O5T" o w v m
?IE:IR) =-95 €l€kS s ?g) —]S €l€kS .

Using real Lagrange multipliers 7;, one obtains the cost function
M M
=3 e SRS"e;+ Y 7 (el TS e — 1/au).
i=1 i=1

The minimizing S must obey, for all &,

0d 0d

PREPN R 4.22
oo~ o) (422
Now
od M
55 = > [ezr%elTRSHei + el SRee; e;
Ski i=1

M
> [eiTS_Hezefs_HS_lei + efS_HS_lekefS_lei]
im1
= ¢ RS"e, + e; SRe,
M M
—er SIS yieie])S ey — e ST vieie] )S S ey
i=1 i=1

Then with I' = diag{v1,..., 7},

92 _ o [RS" — SIS S| e + € [SR—S77ST'TS~ ] ey, (4.23)
85,(6?) : g
Similarly
- j% =l [RS" —STTS™S ! e —ef [SR—S77STITS ] e (4.24)
Skl

13



From (4.22), (4.23), (4.24), one has for all &, 1,

e/ [RS" — SIS S e =0. (4.25)
Thus
RSY = §7'rs-Hg! (4.26)
& SRSESSH = T. (4.27)
Hence the result. n

Matrix S minimizing (4.19) under (4.20) thus has to satisfy (4.21). Condition

(4.21) can be rewritten using the following Lemma.
Lemma 4.3 Under the hypothesis of Lemma 4.2, with T =diag{~1,...,Ym},
>0, +1=1,..., M. (4.28)

and

SRSH =T1/28-Hg-111/2, (4.29)

Proof: Denote
A=SRS" and B=(55")71,
and observe that A and B are Hermitian positive definite. Then under (4.21),
A=TB.
Further since A and B are both positive definite, for all i, eiTBei > 0, and

0< eiTFBeZ- = %-eiTBei,

implying ; > 0. Hence I''/? is a diagonal real positive definite matrix. Also as

A= A" B = BH andT is diagonal,
I'B = BI. (4.30)
Further because of (4.30), for each i, j,
Yibij = bij;

14



holding if and only if either

or

bi; = 0. (4.32)
Now if (4.31) holds then
[[Blij = yibyy = “Yil/Qbiﬂ;/Q
The above clearly holds even under (4.32). Thus
I'B =TY2pr'/?
and (4.29) holds.
=
We now have the following Lemma, which shows that at least one S minimizing
(4.17) has in fact a simpler expression.
Lemma 4.4 At least one minimizing S for (4.17) obeys
SRSH = g Hg!, (4.33)

Proof: Because of Lemma 4.1, if S minimizes (4.17) then so does S = I'"*/4$, with
[ as in Lemma 4.3.
From Lemmas 4.2 and 4.3, there exists a positive definite diagonal I" such that S
obeys
SRSH =T1/28- G-I/,
Then S = I'~/4S also minimizes (4.17), as
SRS" = T YASRSHP-U/A
[Y/AG—H G-1p1/4

= SHgL
]

We now show that the search space of Sy minimizing (4.17) can be restricted to a

particular form. Consider then the following result.
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Lemma 4.5 Let the SVD of positive definite Hermitian R be
R =UANU" (4.34)

with A real, diagonal and U unitary. Then for some unitary V', (4.17) is minimized

by
S =VAY2yH (4.35)

and (4.17) becomes
“Ya, [vave]’ (4.36)

i=1 u
Proof: From Lemma 4.4, S obeys (4.33). Let S have the SVD
S=vivH (4.37)
with T positive definite real diagonal, V, V unitary. Then (4.33) holds if and only if

VIVAUNUHVIVE = VI?VH
e (VAN (UlYY) = T (4.38)

Since U = VU is unitary, for some permutation matrix P,

[~ = PA’PT
T = pPAY2pT (4.39)
Thus
SRS" = VI2V" = VPAPTVH = g7# 571,
Thus with V = VP, (4.36) holds. Further it is easily checked that S in (4.35) achieves
(4.36). n

We now return to the minimization of (3.13) with R = R, having the form (4.34).
Because of Lemma 4.5, with Sy = VA™Y2U* for any choice of Z, and b;, and

subject to V' being unitary

Py > min de > ol ([VAVH] )2 (4.40)

H_
Vv I JETh 17
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>  min den 2%ktk/mi T ( [VAVH] ) (4.41)

VVH= jeT, Jj
2/ny,
= min Zﬂk H a; (4.42)
VVH=I ez,
with
519 — dknkQthk/nk’
and

= [VAVH]jj . (4.43)

For given [y and ay, consider the quantity in (4.42). For such a given choice, one must
determine the arrangement of a; that minimizes this quantity. Such an arrangement
is called an optimum arrangement. The following Lemma characterizes an important

property of such arrangements.
Lemma 4.6 Consider for integers p,q > 2,
p—1 qg—1
f= (Il a)®+ (B I] br)*
k=0 1=0

with o, B, ax, by > 0. Suppose for some 1,

of 5f
a; > b; and 9, 8bj (4.44)
Then
qg—1
H ak 2/p (ﬁ H bk.a¢)2/q < f (445)
k=0,k+#i k=0,k#]

Further if the a;,b; obey the ordering a; > a;y1,b; > biy1, then 0f/0a; < Of /0a;iq
and Of /Ob; < Of /Ob;y .

Proof: The derivative condition in (4.44) holds iff

2 (@ Il Zg i a)*” S 2 2 (BIT{0,kz; b)*

p a;*Q/P q b]1 2/q

which is equivalent to

p—1 pal 2/10 g—1
(a ak)2/p q bl 2/q H bk)Q/q.
i k=0,k£j
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Consider

-1
foo = G T af [P+ T o[ -]
k=0, ki k=0,k#j
pal 2/p H 2/ [ 2/p Q/p} ql:[l 2/ [Q/q 2/q]
> (8 br)'1 b7+ (B be)* 65" — a;
‘Jbl i k=0,k#j k=0,k+#j ’
_ D a D Qi1 o/ Givo/q
T P
@ T o 26 - 2.3 )

Denote

W) =2 B2 gy
q q

Since a; > b;, to prove (4.45), it suffices to show that

h(n) =2a—Exi=2r 1 p2a 5 VA > 1.
q q

Indeed note that

h(1) =0,
and as p,q > 2,
2 2
ROy = 2P Sy - Z e
q9 9 p q
2 2
> P_Pa_5_ 2 v a>1
q9 q p q
= 0.
Further
2/p
0f |da; = 2 (oIl ax)*"” a.“’c)

and since a; > a;.1, it follows that 0f/0a; < 0f/0a;;1. Similarly one can show that
under b; > b;;1, one has 0f/0b; < 0f /0b; ;.

Hence the result. =

We thus have
Pg > min Zﬂk II ai = (4.46)

H_
vvH=T { jeTs

with Z; defining the optimal arrangement of the sequence of a;. From Lemma 4.6
such an optimum arrangement requires that for all ax > ay,
oPy  0P3
< .
Bak (')al
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Then using Theorem 6.1 and under the above condition, P} is Schur concave. Thus
from Fact 4, as {[VAVH] m}f‘il < {A1,.--, A}, the choice V' = I minimizes (4.46),
i.e. the minimum Ppg is attained through the choice of an orthonormal transforma-
tion. Thus even under the relaxed conditions on Sy, the best power is achieved with
orthonormal Sj.

Thus, regardless of A the best Sy is a Karhunen-Loeve Transform of R,,, and the
O'Ej’k equal the eigenvalues of R,. Then from the definition of supermajorization in
Definition 6.1 and Fact 5, it follows that the optimizing A must be such that the

set, of resulting eigenvalues of R,, weakly supermajorize all possible sets of attainable

eigenvalues. As V, is unitary in (3.12), the eigenvalues of R, are the same as those of

-1 U({{ IM -1
Q(A) == Ac IM A R'u U() U1 Ac
uf!
B A_l[] A] UER,Uy UERU, || Iu At
- c M c
UFR,U, UPR,U, || A7

= AU USRUs + U RULA™ + AU R, Uy + AUY R, UL A™ | A (4.47)
Now observe that as R, is positive definite, and U = [Uy U] is unitary,
Ug!
Ut

UER,U, UER,U,
UER,U, UER,U,
is positive definite. Thus, each of the matrices UZR,U,, U({{ R,Uy and U(fl R, Uy —

R, [ Uy U, ] _ (4.48)

Ui R, U (Uf Rle)_l UHR,U,, must be positive definite and nonsingular. Direct

verification shows that because of (4.47),
QA) = A {U({IRvUO — UPR,U, (UIHRUUl)_l U R, U,
+ [UOHR,,U1 (UE R0 + A] UHR,U, [AH + (vF R UIHRT,UO] } AT
Define
Q= A [UJ’ R,Us — UF'R,UL (UFR,UL) ™ U R,,Uo] A (4.49)
and

Q= A1 [UOHR,,U1 (VR T+ A] UHR,U, [AH + (R U{IR,,UO] ATl
(4.50)
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Clearly @), is positive definite and (), is positive semidefinite. Only ()2 depends on
A. Defining \;(€2(A)) as the eigenvalues of 2(A), from Lemma 6.1, and Fact 1,

Pa@A))EL < Q1) + (@) 1L
= {QA))HL <" (@) + Xi(@2) L

Since \;(Q2) > 0, from Fact 3

{2 (Q1) + Xi(@2) 1L, <" {Ni(Qu) 3L, (4.51)

Thus, from Fact 2
QA 1L <" (@)L (4.52)

Thus the optimizing A is one which forces QY2 = 0, i.e.
A= -U'RU, (UIRU) . (4.53)

This is independent of Sy and the optimum bit rate allocations b; ;. Instead it is
determined exclusively by R,, provided by the second order statistics of v(k), and Uj;
provided by the SVD of the blocked channel-equalizer combination matrix C(z). The

resulting value of R,, is
Ry = VA, |US RUs - USR,U (UPRUY) ' UF RUUO] ASIVE, (4.54)

To summarize, the optimizing A is obtained directly using (4.53) with the channel
characteristics supplying U; and the second order statistics of v(k) supplying R,. This
gives Ry, from (4.54). Sy is then provided by the eigenvectors of R, permuted so that
with azj,k the eigenvalues of R,,, an optimum arrangement characterized by Lemma 4.6
is attained. This gives the requisite agj,k and (4.16) gives the optimum bit allocations
bj k-

It is interesting to note that the solution of A is identical to that given in [7]
for the single user case. Modulo the permutation required to enforce the optimum
rearrangement, requirement, the optimizing Sj is also the same as for the single user
case. Thus, even though the optimum bit rate allocations differ in the single and

multiuser settings, the transceiver itself is identical.
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To summarize, we showed that there is a conceptual separation between the three
selections, i.e. the optimizing A is determined exclusively by R,, provided by the
knowledge of the interference and channel-equalizer characteristics; Sy is determined
entirely by A and the channel-equalizer characteristics; Z; are determined entirely by
R, in turn provided by S; and Sy, and the bit allocations are determined once the
above quantities are found. Further as noted in the Introduction, we showed that

without loss of generality, the optimizing Sy, Gy are unitary.

5 Simulation results

In this section, we compare the transmitting power of the DFT based DMT under
no optimum bit allocation and optimum bit allocation with an optimum unitary
transceiver. We assume the equalized-channel to be C(z) = 1+ 0.5z}, and a noise
source v(n) whose power spectral density is shown in fig. 3. We assume the DMT
system supports two user services. Both services employ QAM modulation schemes,
and the target rates for the two users are 600 Kbps and 1 Mbps respectively. The
(1, 7) on the x-axis of the plot indicates that user 1 and 2 were respectively allocated
1,7 number of channels. The plot shows that there is a 10 dB saving in transmit
power with our design over the DF'T based DMT under optimum bit allocation, and

a 14 dB improvement over the conventional DMT with no optimum bit allocation.

6 Conclusions

In this paper, an optimum bit allocation strategy and design of a general biorthog-
onal DMT multicarrier transceiver system employing zero padding redundancy were
presented, for minimizing the transmit power when different users with varied QoS
requirements are supported and are assigned potentially different number of sub-
channels. We showed that no gains in transmit power can be obtained by considering
biorthogonal transceivers over orthogonal transceivers. Our results also showed that

should the channel/interference remain invariant after the initial connection is estab-
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Figure 3: Comparison of transmit power levels.

lished, then only bit loading and subchannel selection need be updated in response to
changing traffic needs. The optimum transceiver itself depends only on the channel
and interference conditions and not on the QoS requirements. Indeed to within a

permutation of subchannels, the optimum transceiver obtained here is identical to

that obtained in [7], [11].

Appendix

Relevant results from the theory of majorization are stated. First consider the defi-

nition of majorization.

Definition 6.1 [Definition of majorization] Consider the following two sequences

x = {x1,..

HZnt andy = {yi,...
Then we say that y majorizes X, denoted as x <y, if the following holds with equality

,Yn} with the ordering x; > xir1 and y; > Yir1-
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atk=n

k k

>wi>Yy, 1<j<n (6.56)
We also have the following facts.
Fact 1 Ifx <y, thenx <" y.
Fact 2 Ifx <"y andy <" z, then x <" z.
Fact 3 Suppose a = {ay,...,a,}, a; > 0, then (x + a) <" x.

One of the examples of majorization in matrix theory is the comparison between
the diagonal elements and eigenvalues of a Hermitian matrix. The following is a

general result that holds for Hermitian matrices.

Fact 4 If H is an n X n Hermitian matriz with diagonal elements {hy,...,h,} = h,

and eigenvalues {\1,..., \n} = A, then h < X\ on R".

The following Lemma gives a comparison of eigenvalues of matrices and sums of

matrices.

Lemma 6.1 Consider two M x M Hermitian matrices Q1 and Q2. Suppose the

eigenvalues of @1, Q2 and Q1 + Q2 are respectively A;(Q1), \i(Q2), and X;(Q1 + Q2),

{2(Q1 + Q) 1Ly < { (@) + XNi(@2) 1L,

Functions that preserve the ordering of majorization are said to be Schur convex.
Note the trivial fact that a function ¢ is Schur convex if and only if —¢ is Schur

concave. The following defines Schur concave functions.

23



Definition 6.2 [Definition of Schur concavity] A real valued function ¢(z) =

&(z1,...,2,) defined on a set A C R™ is said to be Schur concave on A if
x<y onA = ¢x)> d(y).

¢ is strictly Schur concave on A if strict inequality ¢(x) > ¢(y) holds when x is not

a permutation of y.

A useful condition for verifying if a given function ¢ is Schur concave is now

considered. The following theorem results in a test for strict Schur concavity.

Theorem 6.1 Let ¢(z) be a scalar real valued function defined and continuous on
D={(z1,---y2n) : 21 > ... > 2z}, and differentiable on the interior of D. Then ¢(z)

. ) .. . .
s Schur concave on D if %:) 1S increasing in k.

Fact 5 Suppose ¢(z) satisfies the conditions of Theorem 6.1. Then ¢(x) > ¢(y)

whenever x <V y.
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ABSTRACT

In an earlier paper we had presented a novel dual channel iden-
tification approach for mobile wireless communication systems.
Unlike traditional channel estimation methods that rely on train-
ing symbols, this approach used a bent-pipe feedback mechanism
requiring the mobile station (MS) to send portions of its received
signal back to the Base Station (BS) for wireless channel identifi-
cation. Using a filter-bank decomposition concept, we introduced
an effective algorithm for identifying both the forward and the re-
verse channels based only on this feedback information. This new
method permits transfer of computational burden from the MS to
the resource rich BS and leads to significant savings in bandwidth
consuming training signals. This paper proposes a more informa-
tive feedback method leading to significant performance improve-
ment over our earlier scheme.

1. INTRODUCTION

Two important tasks in mobile wireless communications systems
are channel estimation, and compensation aided by frequent trans-
mission of training signals. In most future cellular systems the
forward link, carrying data from Base Stations (BS) to a Mobile
(MS), will support higher data rates than the reverse link. Con-
sequently, the estimation and compensation of the Forward Link
Channel (FLC) requires more resources and longer training se-
guences than that of the Reverse Link Channel (RLC). Equally,
the current practice is to assign the compensation and estimation
of the FLC entirely to the MS, which generally has less computa-
tional reserves than the BS.

To permit the resource rich BS to share in the compensation
of the FLC, and to reduce the bandwidth consuming training of
the FLC, in [2] we proposed a new approach to the estimation and
compensation of the FLC in mobile wireless communication sys-
tems using a novel bent pipe feedback mechanism. In principle,
this feedback mechanism enables the BS to estimate and compen-
sate both the FLC the RLC, without any training signals on either
link or resort to blind estimation techniques. While practical reali-
ties temper these expectations, as we demonstrated in [2], this idea
has significant advantages.

Specifically, the approach of [2] requires that the MS feed back
to the BS a portion of the received signal, over the time slot con-
ventionally reserved for RLC training. Clearly, this permits the BS

Supported by NSF grants ECS-9970105, CCR-9973133 and 999620.

2Department of Electrical & Computer Engineering

University of California
Davis, CA 95616, USA.
zding@ece.ucdavis.edu

to estimate the Roundtrip Channel (RTC). However, the key nov-
elty of our approach lies in the following discovery: By feeding
back only a portion, rather than the entire received signal, one
empowers the BS to identify both the FLC and the RLC from the
roundtrip feedback signal alone. This novel channel feedback does
not require high speed reverse links and naturally accommodates
asymmetric data link structures, and structures where the RLC and
FLC have different carrier frequencies. Furthermore, no additional
training signals are necessary for estimating the RLC at the BS,
though some training for synchronization will still be needed.

As the BS will miss changes in the FLC that occur within
feedback latency, the MS must estimate and compensate the resid-
ual ISl in the channel dynamics the BS cannot compensate. Over
reasonable distances and mobile speeds these changes are modest
enough to make the partially precompensated FLC dynamics rel-
atively mild. Thus, a 5km roundtrip causes a feedback delay of
16.67 s, a time span over which the FLC undergoes little change.
This is underscored by the fact that in GSM each data frame has a
duration of 557 p.s, and training occurs only once per data frame.
Thus the channel variation within the resolution of this delay oc-
curs mainly because of Doppler effect. Yet a vehicle traveling at
100km/hr suffers a maximum Doppler shift of 55 Hz in the cel-
lular band; a shift not large enough to cause drastic changes in
the FLC characteristics over latencies of tens of microseconds.
Thus the residual 1SI that must be equalized at the receiver will
be significantly milder leading to the need for much shorter train-
ing sequences on the FLC. Given that no training for estimation is
needed on the RLC, and that feedback data occupies the RLC train-
ing slot used in conventional communication, this implies substan-
tial savings in the bandwidth devoted to the overall training, and a
siginficant transfer of the FLC compensation/estimation burden to
the BS. Simulations presented in [2] support this contention. This
scheme also permits the use of such adaptive coding at the BS as
has been advocated by several authors [3]- [6].

The scheme of [2] is preliminary in nature. One of its disad-
vantages is that it fails to make as efficient a use of the feedback
slot as is desirable. In particular a large fraction of the feedback
slot carries zero samples that do not contain useful information
about the FLC. The key contribution of this paper is to formulate a
more informative feedback scheme that carries more information
about the FLC leading to improved FLC estimation.

2. THE FEEDBACK SCHEME

For the most part in this paper we assume that the ratio of the data
rates supported on the FLC and RLC is A/ L, with M > L. Later



we will comment on how to accomodate the case of M < L.
In fig. 1 H(z) and G(z) are the discrete time baseband models
of the FLC and RLC respectively, w;(n) are the noise sequence
at their output, z(n) and y(n) are respectively the data sequence
transmitted and received by the BS. The samples s (n), received
at the MS are rate converted by the N-branch rate convertor, [1]
that generates L samples for every M samples at its input, i.e.
effects a rate conversion by a factor of L /M. The sequence s3(n)
is retransmitted over the RLC over the slots usually reserved for
RLC training: «(k) models the interference caused by the normal
RLC data because of imperfect synchronization.

In this arrangement N < L < M. Effectively, over sample
lengths of L, s»(n) contains IV out of every M samples of s, (n),
and has in addition L — N zeros. The scheme in [2] uses only the
top branch of this arrangement, i.e. has N = 1. Consequently in
[2] out of every L-symbol feedback slot only one sample contains
the data received at the MS, with the remaining L — 1 symbols
being zero samples. Thus in [2] the available feedback slot is under
utilized as far as information exchange is considered. This causes
important information to be unnecessarily discarded, reducing the
ability to track time variations, resulting in larger residual I1SI in the
FLC compensated on the basis of the estimate at the BS. As we will
demonstrate in Section 4, the more sophisticated rate convertor
with N = L, leads to improved performance.

Consider the M and L fold type I and Il polyphase decomposi-

tions of H (=) and G/(=) respectively, i.e. H(z) = 3.1~ E;(zM)2~"

1=0
and G(z) = Y1 Ri(z%)====1). Then, [1], absent noise
and interference, Fig. 1 can be transformed into Fig. 2, where
R(z) and E(z) are respectively, left and right pseudocirculant ma-

trices given by

Ro(Z) R1 (3) RN_l(Z)
R1 (Z) Rz (Z) R\(Z)
R(z) = : . 1)
Rr_1(z) z'Ro(2) 2 'Ryn—_a(2)
and E(z)
Eo(2) Ei(2) En-1(2)
2z En—1(2) Eo(z) En—2(2)
. 2
2 'Epm_nii1(2) 2 'Eum_nio Eyv—n
Define
E(:) = [E0(5)7"'7E1W—1(5)] (3)
R(z) = [Ro(2),---, Re—1(2)]". )
Define in Fig.2 Y(z) = [Yi(2), -, Y5(2)]" and X(z) =

[X1(2),- m (2)]* where X; (z) and Y;(z) are the z-transform
of ; (n) and Yi (n) Then we have the following relation

Y(z) = R()E(:)X(2). 5)

Since X;(z) and Y;(z) are known to BS, the round trip chan-
nel R(z)E(z) can be estimated. The question is, under what con-
ditions can one extract H(z) and G(z) from R(z)E(z). Clearly
the best one can hope for is to estimate R(z) and E(z) to within a
scaling constant and common delays among the E;(z) and R;(z).
In the case of [2], such an extraction is possible if either (not nec-
essarily both) of the following conditions apply.

-1 N =1

Fig. 1. System model of improved scheme: Rate changer with N
branches.
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Fig. 2. Polyphase Representation.
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Assumption 1 The greatest common divisor (gcd) of the set of
polynomials R;(z) is a pure delay z~—¢ (d integer). Further their
maximum order [ is known.

Assumption 2 The gcd of set of the set of polynomials E; (=) is
a pure delay =% (d integer). Further their maximum order /zis
known.

To see why, observe that in the setting of [2], i.e. N = 1, (5)
is replaced by Y (z) = R(z)E(z)X(z). Thus the rank-1 matrix
R(z)E(z) can be estimated. Observe the k-th row of R(z)E(z) is
simply, Rx(z)[Eo(2),---, Eam—1(z)]. Under Assumption 2, the
gcd of the elements of thls row provides to within a delay and scal-
ing, Rx(z) and hence also E;(z) and H(z). Similar unraveling is
possible should Assumption 1 hold.

Observe in the setting of this paper the rank-1 matrix R(z) E(z)
is not directly available. Yet in the next two sections, we show that
under either Assumption 1 or 2, H(z) and G(z) can be obtained
to within a scaling and delay from the the roundtrip dynamics cap-
tured by R(z)E(z).

3. PROOF OF IDENTIFIABILITY

In this section we show that E(z) is identifiable to within a scaling
constant, from R(z)E(z), when M > L > N, and assumption
2 holds with the common delay d among the E; equalling zero.
In section 3.3, we discuss the case where this common delay is
nonzero. The knowledge of E(z) provides H(z). A similar result
can be formulated when assumption 1 holdsorwhen L > M > N
orwhen L = M > N. Thus even the case of L = M can
be captured. In each case the selection of N ensures that some
received signal is discarded and s, (n) # si(n — k).

3.1. Definitions and notations

Foran M x N polynomial matrix A(z) = El:o (i)=~", where
1 is the degree of A(z), define the mAM >< (I+m)N generallzed



Sylvester matrix of A(z) as

A(0) - A
For the r x Mm matrix B = [B(0),- - -, B(m — 1)], define

m—1

Pmi(B) = B(i)z"". (7)

where B(i) and P,,, . (B) have dimension r x M. Note that
Pum,m (B) is a function of z.
Define an M x M polynomial matrix Qs (z) as

QM<z)=(°<M§>><1 far ) ®)

z 01)((1‘/[71)

where Iy, denotes (M — 1) x (M — 1) identity matrix; 0,,,x
denotes the m x n zero matrix.

3.2. ldentifiability
With C(z) = R(2)E(z),

T (C1) = Ton (BN Ty p14m (RT) )

Whenever G(z)H(z) # 0, T,.(RY) and 7, (E) are full rank
for all intgers m > 0. Hence 7,,(C”) and T, (E”) have iden-
tical left nullspaces. Thus the knowledge of C(z) provides the
left nullspace of 7,. (E). The following theorem shows that the
left null space of 7. (EX) under assumption 2 provides H(z) to
within a scaling.

Theorem 1 Suppose E(z) and E(z) are defined in (3) and (2)
respectively and assumption 2 is in force, with d = 0 and M >
L > N. Thenfor any integer m > Nlg + N —1, T,.(E”) has a
nontrivial left null space. Suppose B is a matrix whose rows span
the left nullspace of 7., (ET). Let

B(2) = [(Pur(B)T, -+ QY (Pt (B)'].  (10)

Consider an M -dimensional nonzero polynomial row vector E(z)
with degree [z. Then

TU(E)Ti,(B) = 0iff E(z) = cE(z) (11)
where ¢ is a nonzero constant.

Thus indeed the left null space of 7;,,(B), constructed from the
left nullspace of T, (CT), provides E(z) to a scaling.

3.3. A Subspace Algorithm

Assume assumption 2 holds with d = 0. Suppose the signals z(n),
u(n), wq (n) and wy(n) are zero mean, white and mutually uncor-
related. In view of the noise free model of (5), and the knowledge
of z(n) and y(r) at the BS, a standard least squares scheme pro-
vides an estimate of 7., (C”) and hence its SVD:

Y 0 wi
Tm(CT)+J\f:(VsVn)< 0 s )<WnH> (12)

Zip

Find B whose rows span the left nullspace of 7,,(C™), where
m > Nlg + N — 1, and construct B(z) defined in (10). Be-
cause of the assumption of lack of correlation between x(n) and
the noise and interference, B is provided by V,,. Then solving for
Th (E) as the eigenvector corresponding to the smallest eigenvalue
of 71, (B)7i;(B)*, where (-)f indicates transpose conjugate,
provides E(z). Since T; 1 (E) has full row rank one finds G(z)
also to a scaling constant, using

Ti(R) = Ti(C)(Tips1 (E))".

If E;(z) have acommon delay then this manifests in certain columns
of 7., (C™) being zero. Then applying the above procedure on the
matrix with these zero columns removed provides H(z) and G(z)
to within a scaling and a delay.

4. SIMULATIONS

We present two simulation examples. The first example shows the
basic performance of the scheme in this paper relative to that of
[2]. The second example illustrates the reduction of training levels
needed on the FLC when channel parameters change with time.

4.1. Simulation |

In the simulation, FLC and RLC are generated from two delayed
raised-cosine pulse C (¢, ), where « is the roll-off factor. C (¢, «)
is limited in 8T for FLC and in 6T for RLC. The FLC and RLC
have the respective analog models: 0.3C(¢,0.25) + 0.8C(t —
T/2,0.25) and RLC = 0.5C (¢,0.10)40.6C(t —T//3,0.10). We
use downsampling factor A = 3 and upsampling factor L = 2
and N = L. Noises wi(n) and w»(n) are zero mean and have
the same variance. The input signal z(n) is i.i.d BPSK. To ob-
tain a performance measure of channel estimation, we define the
normalized root-mean-square error (NRMSE) as

M,

1 1 A 2
NRMSE = — hiy —h 13

where A, is the number of Monte Carlo runs; A is the actual chan-
nel and h;) is the ¢ estimation. In our simulation Af; = 100.
In each run 600 symbols are used. We call the scheme in [2] old
scheme and the scheme in this paper new scheme. Fig. 3 shows
NRMSE versus input SNR, where input SNR is defined as

Input SNR = 101og 10E(z> (n))/E(w? (n)) (14)

A zero-forcing preequalizer is constructed for FLC and a post
equalizer for the RLC, on the basis of the FLC and RLC estimates.
Both are housed at the BS. Equalizer SNR for the FLC, is com-
puted using the signal power at the FLC input. For RLC, it uses
the signal power at the equalizer output. BER versus equalizer
SNR is displayed in Fig. 4, where the input symbol is BPSK sig-
nal. Both figures show the performance improvement due to the
more informative feedback of this paper.

4.2. Simulation I1: Reduced training for a time varying chan-
nel

We use COST-207 Typical Urban(TU) [7] model with 100 echo
paths, BPSK data and maximum Doppler frequency 55Hz. We
assume the channels to be quasistatic, i.e., time-invariant in one
frame and time-variant from frame to frame. The receive filters
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Fig. 3. NRMSE versus input SNR for both schemes
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Fig. 4. BER versus equalizer SNR for both schemes.

for FLC and RLC are raised cosine functions with roll-off factors
0.2 and 0.1 respectively. The FLC sustains a data rate of 1 Mbps,
and the RLC supports 0.667 Mbps. We use downsampling factor
M = 3 and upsampling factor L = 2. The schemeswith N =1
and N = 2 are called old scheme and new scheme respectively. In
both cases we compare two settings:

(a) Training aided equalization of FLC at the MS and of the
RLC at the BS, with no feedback.

(b) No training on the RLC, but instead sending feedback data
of the same length as the RLC training data in (a). A prec-
ompensator, obtained by the new scheme or the old scheme
is used on the FLC and is augmented by a post-equalizer
estimated at the receiver using reduced training.

Methods in (a) and (b) use the same signal power at the FLC
input. Fig. 5 shows n;/n, versus input SNR for methods in (a)
and (b) to achieve the same BER. Here n, is the length of the
FLC training sequence used in (a) and n,; the length of training
used in (b), so that the same FLC BER is obtained in both cases.
As is evident in Fig. 5, in order to achieve the same BER as the
conventional method, the new scheme needs less training data and

16

thus saves more bandwidth than the old scheme when input SNR>
6dB. By way of further comparison we note that at 18dB SNR,
while the training sequence length in [2] is 30% of (a), the length
for the new scheme is only 15%, i.e. half that needed by [2].

1.4 T

—— New scheme
—©— Old scheme

1.2 -

0 I I I I

I
8 10 12 14 16 18
Input SNR(dB)

Fig. 5. ny /n, versus SNR at the same BER.

5. CONCLUSION

In this paper, a bent pipe multi-branch feedback scheme is used
to estimate FLC and RLC from RTC. By exploiting the properties
of the nullspace of pseudocirculant matrices, the identifiability re-
sult and unravelling method are derived for this improved scheme.
Since this improved scheme uses more information from FLC, we
get performance improvement compared to the scheme in [2].
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Complete Characterization of Channel Resistant DM'T with Cyclic Prefix
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Abstract

In this paper, we provide a complete characterization of Discrete Multitone Transmission (DMT)
systems that employ a cyclic prefix redundancy, and can be equalized by a bank of one tap equalizers
in each subchannel, for almost all values of channel parameters. We show that amomg all possible FIR
transmitting and receiving filters of arbitrary order, such channel resistant transmission requires (a) that
the receive filters be matched to the transmit filters, and (b) that to within a scaling and delay, the
transmit and receive filters have IDFT and DFT coefficients. Thus we prove that, should cyclic prefix

be applied, only trivial variants of traditional DFT based DMT systems are channel resistant.
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1 Introduction

Discrete multitone (DMT) modulation, depicted in fig. 1 is a standard in many wireline and wireless
applications,[1]. An M-point block transformation, A(z) is applied to M-parallel data streams, followed

by a parallel to serial conversion (block P to S). For an FIR channel with transfer function,
H(z) :Zhi2_17 (1.1)
1=0

a cyclic prefir redundancy of length k is added by the CPI block, and is removed by the CPR block. Thus
each M-block of v(n) is converted to an N-block of s(k), N = kx + M, by prepending the last x samples
of the block. After CPR, one performs serial to parallel conversion (StoP block) , and the inverse block
transformation, B(z). The overall system has the equivalent description of fig. 2. In traditional DMT
A(z) is a block IDFT operation, and B(z) is a block DFT operation, i.e. with W the M-point DFT matrix

having 2k-th element

Wly=¢ 50—, A(z) =W" and B(z) = W. (1.2)
() yo(n) Go(n) Zo(n)
- ; v(n) s(n) y(n) p(n) _ SR
: A(z) : StoP = CPI " H(z = CPR = PtoS | : B(z) |/
zyr_1(n) yam-1(n) Jrr—1(n) Zpr—1(n)

Figure 1: The DMT system.
Under (1.2), F;(z) and G;(z) are mutually matched, respectively causal and anticausal of degree M —1
with coefficients of F}(z) being the cefficients of the i-th column of W, This leads to considerable spectral

overlap between the subchannels. Cyclic prefix and (1.2) ensure that
X (n) = [zo(n), -, z1(n)]" and X(n) = [Eo(n), . éy—1(n)]7 X(n) = A(hg, -+, he)X(n) (1.3)

with diagonal, A(hg,- -, h,) nonsingular for almost all h; barring those for which H(z) has a unit circle
zero at an M-th root of unity. Thus, for almost all channels of order no greater than s, one tap equalizer

at each subchannel output ensures ISI removal. We call such a system Channel Resistant DMT.

»|T vl m cetplueplerrl—f Go HMI}—»

Figure 2: A multicarrier system with cyclic prefix

More general orthogonal block transforms, with zero padding redundancy, and precoding are in [2]-[6].

Improved spectral separation through longer Fj(z) and Gi(z), is advocated in [7]. Given the prevalence of



cyclic prefix redundancy in practical systems, and the issues raised in [7], we ask whether there are longer
length F;(z) and G;(z) that together with cyclic prefix redundancy, ensure channel resistance? We thus
characterize all M x M FIR
P2 g
A(z) = Z A;z"" and B(z) = Z Bz (1.4)
i=—p1 i=—q

such that with cyclic prefix redundancy, and H(z) as in (1.1), (1.3) holds with diagonal A(hg,-- -, hs)
nonsingular for almost all h;. We show that all such A(z), B(z) yield F(z) G(z), that are mutually matched
to within complex scaling constants, and are identical to their counterparts yielded by the conventional
DMT, to within scaling constants and delays. Thus channel resistance with cyclic prefix is incompatible

with greater spectral separation.

2 Formulation

In fig. 1 successive M-blocks of v(n) and p(n) and N-blocks of r(n) and s(n) obey, [2]:

v(n) = [v(Mn),---,0(Mn—M+1)]" :_[yO(n)a -y (n)]” = A(2) X (n) (2.5)
s |0 I,
s(n) = [s(Nn),--,s(Nn—N+1)]" = v(n) (2.6)
Iy
[ 7o 2 hy oy 2'hy g oo 27hy
h h 2 hy_y - z7Mh
r(n) = [r(Nn),---,r(Nn—N+1)]! = : ' : ’ : M o ’ s(n) (2.7)
| hv—1 hy—o hi  hg |
p(n) = [p(Mn). - p(n =M+ 1] = [ 0 Iy |v0) X(w) = BGIp() (2.8)

Define circulant(n) to be the square circulant matrix with first row 7. Then, [2], one has
‘H = circulant [ he 0 ... 0 he ... h ] . X(n) = B(2)HA(2)X (n). (2.9)
with H M x M. Further we note, that because of (2.5) and (2.8), fig. 1 is equivalent to fig. 2 with

[Fo(2), - Fua(2)] = [1,271 2D AGM), [Go(2), -+ G (2)]T = (1,2, 2007D] BT (M),
(2.10)

Channel resistance then requires that with diagonal, A(hg,- - -, h,) nonsingular for almost all h;,

B(2)HA(z) = A(hg, -, hy). (2.11)



Observe with the M x M circulant shift matrix

k
J = circulant [ 01 ... 0 ] . H=hol+> JY 'h, (2.12)
=1

Thus (2.11) requires that with diagonal A; and at least one A; nonsingular

B(2)A(z) = Agand V1 <i <k B(z2)JM7A(z) = A;. (2.13)

3 The Main Result

The following Lemma is useful.

Lemma 3.1 Suppose two M x M nonsingular matrices B and A are such that both BA and BJM 14 are
diagonal. Then for some permutation matriz P and diagonal matrices Dp and Dy, B = DgPW" and
A=wWP'Dy.

Proof: As BA is diagonal, the expression for B ensures that for A. Call A; the M x (M — 1) matrix
comprising all but the i-th column of A and b; = [bi1, - -, biar] # O the i-th row of B. As rank(A4;) = M —1,

bi - bz’
A; =0 = rank =1.
biJM—l bz-JM_l
Thus for some o; # 0, [bj1,---,binv] = cilbio,---,biar, bin]. Thus, for 1 < Ii < M, by = ;b1 and
bil = OlibiM- Thus OQM =1 and bl = bi1[17 [ 7N 704?/[_1]. n

In (2.13) as at least one A; is nonsigular, B(z), A(z) are nonsigular. Thus from Lemma 3.1, for almost all z,
B(z) = Dp(2)P(2)WH and A(z) = WPT (2)D4(z), with Dg(2), Da(z) diagonal and P(z) a permutation
matrix at almost all z. Observe, that for D; nonzero, diagonal and P;, P permutations, and D a diagonal
matrix, D1P; + D3Py = DP iff P, = P,. Thus P(z) = P is constant. Further, from (1.2), Dj(z) =
Efi_pl Daiz"tand Dp(z) = E?i_ql Dpiz—'. Further Dp(z)D4(z) = Ag. It is readily seen that that the
product of two, two sided scalar polynomials a(z) and b(z) is a constant iff for some I, a(z) = a;z! and
b(z) = b_;z ' Thus, as Dy(z) and D4(z) are diagonal, for some constant nonsingular, diagonal A4 and

Ap and Z = diag {z%, -+, zM}
B(z) = AgZPW!T and A(z) = WPT 2 1A,. (3.14)

As WHHW is always diagonal, this is also sufficient for (2.11), with A(hq, - -, h,) nonsingular unless H(z)
has a zero at an M-th root of unity. Call the filters for the tradional DMT Fj(z) and Gy(z), i.e.

~

[Fo(z), e ﬁ’M,l(z)] = [1, 274 z_(M_l)] wi, [GO(Z) - -GM,l(z)]T = [1, Zy - -Z(M_l)] wT.
(3.15)



Then, because of (2.10) and (3.14), we have the following main result.

Theorem 3.1 Under (1.4) (2.11) holds for all h; with A(hg,-- -, h.) nonsingular unless H(z) has a zero
at an M -th root of unity, iff the following two conditions hold. (i) With Fy(z) as in(3.15), for some complex
a; # 0, integer k; and permutation P, [Fy(z),---,Fy—1(2)] = [ozonkO]:7’0(2)7 el aM_lekM*Iﬁ‘M_l(z_)]P;

and (i) for some complex B; # 0, Gi(z) = B F7(1/z).

Consequently, the level of specral overlap between the subchannels is the same as in traditional DMT.

4 Conclusions

We have shown that all channel resistant DMT systems are trivial variants of the DFT based system, as
long as cyclic redundancy is employed. This stands in contrast to the results of [6], [3] where more general

DMT systems under precoding are shown to be channel resistant.
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ABSTRACT

In this paper we present an efficient bitloading algorithm that ap-
plies to both subband coding and multicarrier communication. The
goal is to effect an optimal distribution of positive integer bit val-
ues among various subchannels to achieve a minimum distortion
error variance for subband coding and transmitted power for multi-
carrier communications. Existing algorithms in the literature grow
with the total number of bits that must be distributed. The novelty
of our algorithm lies in the fact that its complexity is independent
of the total number of bits to be allocated.

1. INTRODUCTION

An important problem in both subband coding and multicarrier
communications is bitloading. Specifically, for an N-subchannel
system in these problems reduce to general problem of finding b
to

N
Minimize: P(bs, .., bx) = > ¢x(bx) 1)
k=1
N
Subject to : Zb’“ =B,b, €{0,1,...B}, )
k=1

where ¢ is a convex function, and B is a positive integer. In
subband coding

bk (br) = a2 ®)
where «y, is determined by the signal variance in the k-th subchan-
nel, [1]and P (b1, .., bn) is the average distortion variance, and by,
is the bits assigned to the k-th subchannel. Further av;, increases
with increasing signal variance. In multicarrier systems

dr(be) = 2’ O]

where «y reflect target performance, and channel and interfer-
ence conditions experienced in the k-th subchannel, [11], [12] and
P(b1,..,bn) is the total transmitted power. Higher values of ay,
reflects more adverse subchannel conditions and/or stringent per-
formance goals; by, is the the number of bits assigned to each sym-
bol in the cognizant subchannel.

It is recognized that for general convex functions ¢(-), the
above constrained minimization grows in complexity with the size
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of B. Since B can be large, it is important to formulate algorithms
for which the complexity bound is independent of B. The princi-
ple contribution of this paper is to show that if one works with the
special case of (4), then such an algorithm is indeed feasible. The
algorithm we provide in this paper though formulated in the con-
text of (4), can be trivially modified to accomodate both (3), and
indeed a general function

ok (br) = oa™* (5)

To place this work in context we note the presence of several
bit loading algorithms in the literature. These include, [3], [4], [6],
[8], [10]. The two most advanced and recent are [10] and [3]. The
complexity of [10] grows as O(N log(N)) with the number of
subchannels, but linearly with B. On the other hand [3] provides
a suboptimal solution with complexity O(N). Strictly speaking
its complexity does not grow with B, as it restricts the maximum
number of bits to be assigned to any subchannel to some B*. In-
stead the complexity grows with B*. The assumption of small B*
is certainly problematic in subband coding, and even in communi-
cations settings when certain subchannels experience deep fades.
In such a case efficiency may demand that large number bits be
assigned to subchannels with more favorable conditions. A still
another contributor to the complexity of [3] is the dynamic range
of a;, which again comes into play in the presence of deep fades.
All other algorithms have run times that increase with B.

By contrast, we provide an exact solution to (1, 2), under (4),
whose complexity has an upper bound that is determined only by N
and is in fact O(V log ). The role of B is only to induce cyclic
fluctuations in the precise number of computations, and neither B
nor the dynamic range of «, affects the upper bound of the run
time.

The paper is organized as follows. Section 2 recaps a result
from [13], that is specialized in this paper to formulate the algo-
rithm given in section 3. The complexity and proof of correctness
are provided in Sections 4 and 5, respectively. Section 6 gives
simulations comparing the run time of this algorithm with those of
[10] and [3].

2. A GENERAL RESULT

We now present a general result from [13] that solves (1), (2) for
arbitrary convex ¢ (-). This result is specialized to the cases of
(3) and (4) in subsequent sections. Denote for k = 1,..., N,z =
1,..,B,

k() = ¢n(x) — dr(z — 1). (6)

The ¢ ’s being conve, it follows that



5k(1) < 5k(2) <. < §k(B),Vk (7)
Let S denote the set of smallest B elements of
7={0(z): k=1,..,N,z=1,..., B}
The following lemma from [13], gives an optimum solution to (1),

Q).

Lemmal The optimal solution b* = [b],...,b%]" to problem
(1), (2), is defined as follows

0 ox(l) ¢ S
b;;:{ 5
Y

(5k(B) es
Ook(y) € S,0u(y+1) ¢S

In essence this lemma provides a conceptual framework for
solving (1), (2). Specifically, construct .S, and for each &, deter-
mine the largest integer argument by, for which d,(b) is in S. For
general convex functions ¢, the complexity of all known solutions
grows with B. In the rest of the paper we show by example of (4)
that the result when specialized to (4) leads to an algorithm that
does not depend on B. A trivial modification of this algorithm can
be formulated for (3), and indeed (5) and is omitted.

3. PROPOSED LOADING ALGORITHM
In the special case of (4), one finds that,
on(x) = an2” . (®)

The first step of the algorithm requires ordering the «;, and
can be accomplished in O(NV log N) steps. Henceforth assume
without sacrificing generality that:

ar <as <. . <an. 9)
Define the sequence:

li = Nogy(S4)],i =1,2,..., N (10)
a1
with Ix4+1 = oo, where [a] is the smallest integer greater than

or equal to a. The significance of the integers I; is explained by
Lemma 2

Lemma2 With [; defined in (10),

-1 I
a12"7 <oy < a2,

61(11) < (51(1) < (51(11 +4 1).

Proof:  From (10) we have l; = [log,(54)]. The definition of

the ceiling function gives us the following result,
L — 1 < logy(22) < 1.
a1

Hence the result. ]

Then the proposed algorithm for solving (1), (2) under (4) is
given below. It assumes that the ordering implicit in (9), has al-
ready occurred, and assigns b; bits to the i-th subchannel.

Proposed algorithm
Step-1: Find the smallest k such that

k—1
Ry = Z(lk —1)>B (11)

i=1

Then
bi =0 Vie{kk+1,--- N} 12)
Step-2: Find

A=B—Ri, (13)
r=Amod (k—1) (14)
g = Adiv(k — 1) (15)

Step-3: Find the r smallest elements of the set
{61 (le=1 — 11), 02 (=1 — 12), -+, 8k—1(0) }. (16)
In particular, with I, such that with i, € {1,2,---,k — 1},
6ji (b1 = 1j;) < Gjigr (lem1 — Ly ih), A7)

call
J={j1,52, ., Jr}- (18)
If r =0, J is empty.
Step-4: Forall i € {1,2,---,k — 1},
bh = { l—1 — U + q else. (19)

4. COMPLEXITY

Observe that the complexity inplicit in achieving (9) is O(N log V).
Determination of & so that (11) holds requires at most 2N opera-
tions, regardless of B. Indeed one has, with

pr=0

Pn = Pn—1 + ln;
Rn = (n — 1)ln — Pn—1-
The only impact that B has in the complexity of determining & is
that for sufficiently small B, kK < N and the number of computa-
tions is further reduced to 2(k — 1).
Determining the ranking manifest in (17) is detrmined only by
rand k, and is

O(rlog(k — 1)) < O((N — 1) log(N — 1)).

Determination of r requires 2 operations, independent of B. B
does affect the precise value of r, which however is no greater
than N — 1.

Thus the overall complexity, is bounded by O(N log(V)),
with B playing no role in the determination of this bound. The
only effect that B has on the overall complexity is to cause fluc-
tuations in the precise number of operations, within a range that is
independent of B. To recap, these fluctuations occur when:

e Forsmall B, k < N, and finding & requires only 2(k — 1)
operations.

e As B changes r fluctuates between 0 and N — 1, and the
number of operations required to determine the smallest r
elements of the set in (16) changes.



5. PROOF FOR CORRECTNESS

We now show that the algorithm in section 3 does indeed solve (1),
(2), under (4). In view of Lemma 1 it suffices to show that the set

S* = {01(1),--+,01(b1),02(1), - -+, 62(b2), - - -, Ok—1(bk—1)},
(20)
is such that
S* =5,

defined in section 2. This in turn requires the demonstration of the
following facts.

(A) |S*| = |S| = B, where |-| represents the cardinality of its
argument.

(B) Foralli,j € {1,2,---,N},
di(biv1) > 6;(b;)-
The first theorem proves (A).
Theorem 1 With b; defined in (11-19), |S*| = B.

Proof: Since b; = O forall ¢ € {k,k+ 1,---, N}, we need to
show that

From (11-19) we have that

k—1
Zbi = Zbi+ Z bi
i=1

ieJ ie{{1,,k—1}—J}

= g+ D)+ E—1=1)g+ Y (k1 — 1)

= A+ Rr
B.
[ |
To prove (B) we need an additional Lemma.
Lemma3 With [;, k and ¢ as in (10-15),
Slk_lkfl If’l’:O
q <lp—lp_1 if?“?fo
Proof: From (11-15)
(k—=1)g+r < Rr—Rp
k k—1
= Z(lk =) - (le—1 — 1)
i=1 =1
= (E—1(g —lx—1).
Hence the result. [ |

We now prove (B) for the case where r = 0.

Theorem 2 Consider (10-19). Suppose » = 0. Then (B) above
holds.

Proof: Foralli e {2,---,k— 1}, from Lemma 2, we have:
8i(bi) = a2k THEITE <ot = 5y (by),  (21)

as !y = 0. Thus 61 (b1) is the largest member of S* in (20).
From Lemma 2, foralli € {1,---,k — 1},

51(b1 + 1) = a¢21k’171i+q > 0(12lk71+q71 = 51(b1). (22)

Further, as (12) holds, we have from Lemmas 2 and 3 that for all
ZE {k7k+177N}7

(51([)1) = a12lk_l+q_1 < a12l""_1 < Qp = (Sk(l) (23)

In view of (21), (22) and (23), prove the result. ]

Finally we prove (B) for the case where r # 0.

Theorem 3 Consider (10-19). Suppose r # 0. Then (B) above
holds.

Proof: With the indices j; defined in (17), we first show that
05, > 0i(bi) Vie{l,---,k—1}. (24)

In view of (17) this is clearly true for ¢ € J. Now consider p €
{{1,---,k =1} — J}. Because of (19) and Lemma 2,

op(bp) = O‘p21k717ZP+q71
< a12lk—1+q*1
< aj12lk717lj1+q
= 6j, (bj)
< §jv<(bjr)7

where the last inequality follows from (17).
Foralli e {{1,---,k— 1} — J}, (17, 18) demonstrate that

di(bi + 1) > 65, (bj,.)- (25)
Further, from Lemma 2 forall : € J,
8i(bi + 1) = a2k —17HTIT 5 g ol > 5, (),
Then the result is proved by observing from Lemma 3 that

8, (bj,.)

Colk—1—1lj,.+aq
a,]rz Jr
Colk—1—1;,—1
a]r2 Jr
lp—1
Ot12 k

ay, = 0k (1).

AN CIA

6. SIMULATIONS

A comparison of the performance of the algorithms of [10] and [3]
and the proposed algorithm with respect to the number of compu-
tations required is shown in the figures 1 and 2, for the cases where
N = 32and N = 64, respectively. In implementing [3], which is
a suboptimal algorithm, the maximum number of bits, B* that any
channel can be assigned is kept at B.
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Fig. 1. Runtime comparisions of the three algorithms for N=32
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Fig. 2. Runtime comparisions of the three algorithms for N=64

Number of computations needed for each algorithm to con-
verge to the optimal solution was calculated by assuming that addi-
tion, subtraction, div, mod, multiplication or division of two num-
bers would need one computation as would the logical compar-
isons between two decimal numbers. The results show that the
algorithm described in [3] is linear with respect to B while the al-
gorithm in [10] needs large number of computations to converge
as B grows. The number of computations needed for the proposed
algorithm is independent of the change in B the minor variations
seen are attributed to the facts that for small B, & in (11) is small,
reducing the number of computations slightly, and cyclic fluctua-
tions induced by the variation in r (see (14)) between 0 and N — 1.
the sorting algorithm whose convergence depends on the input vec-
tor) and the difference in the runtimes becomes very significant for
large B. Further the proposed algorithm out performs that of [3],
even when B is small, and even in [3] B = B™ will be chosen.
This is largely because of the fact that the run time in [3] grows
with the dynamic range of ay.

7. CONCLUSIONS

We presented an optimum bit loading algorithm with a run time
of O(N log N)) which is more efficient than the ones existing in
the literature, in that its complexity does not depend on the total
number of bits to be allocated. The improvement in performance
is very significant if B is large when compared to N.
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